Skip to main content
Log in

Propagation dynamics for a time-periodic reaction–diffusion SI epidemic model with periodic recruitment

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The paper is devoted to the study of the asymptotic speed of spread and traveling wave solutions for a time-periodic reaction–diffusion SI epidemic model which lacks the comparison principle. By using the basic reproduction number \(R_0\) of the corresponding periodic ordinary differential system and the minimal wave speed \(c^*\), the spreading properties of the corresponding solution of the model are established. More precisely, if \(R_{0} \leqslant 1\), then the solution of the system converges to the disease-free equilibrium as \(t \rightarrow \infty \) and if \(R_0 > 1\), the disease is persistent behind the front and extinct ahead the front. On the basis of it, we then analyze the full information about the existence and nonexistence of traveling wave solutions of the system involved with \(R_0\) and \(c^*\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, B., Ducrot, A., Ruan, S.: Generalized traveling waves for time-dependent reaction-diffusion systems. Math. Ann. (2020). https://doi.org/10.1007/s00208-020-01998-3

    Article  Google Scholar 

  2. Bacaëra, N., Gomes, M.: On the final size of epidemics with seasonality. J. Math. Biol. 71, 1954–1966 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Buonomo, B., Chitnis, N., d’Onofrio, A.: Seasonality in epidemic models: a literature review. Ricerche mat. 67, 7–25 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Ducrot, A.: Spatial propagation for a two component reaction-diffusion system arising in population dynamics. J. Differ. Equ. 260, 8316–8357 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Ducrot, A., Giletti, T.: Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population. J. Math. Biol. 69, 533–552 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Ducrot, A., Giletti, T., Matano, H.: Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type. Calc. Var. Partial Differ. Equ. 58, 137 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age structured model with diffusion. Proc. R. Soc. Edinburgh Sect. A 139, 459–482 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age structured model with external supplies. Nonlinearity 24, 2891–2911 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Eikenberry, S.E., Gumel, A.B.: Mathematical modeling of climate change and malaria transmission dynamics: a historical review. J. Math. Biol. 77, 857–933 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Fang, J., Yu, X., Zhao, X.-Q.: Traveling waves and spreading speeds for time-space periodic monotone systems. J. Funct. Anal. 272, 4222–4262 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Földes, J., Poláčik, P.: On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete Contin. Dynam. Syst. 25, 133–157 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Fu, S.-C.: Traveling waves for a diffusive SIR model with delay. J. Math. Anal. Appl. 435, 20–37 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Grassly, N.C., Fraser, C.: Seasonal infectious disease epidemiology. Proc. R. Soc. B. 273, 2541–2550 (2006)

    Google Scholar 

  14. Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity. Longman Scientific and Technical, Harlow (1991)

    MATH  Google Scholar 

  15. Hethcote, H.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Hethcote, H., Levin, S.: Periodicity in epidemiological models. In: Levin, S.A., Hallam, T.G., Gross, L. (eds.) Applied Mathematical Ecology, Biomathematics, vol. 18. Springer, Berlin (1989)

    Google Scholar 

  17. Lam, K.-Y., Wang, X., Zhang, T.: Traveling waves for a class of diffusive disease-transmission models with network structures. SIAM J. Math. Anal. 50, 5719–5748 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Li, J., Zou, X.: Modeling spatial spread of infections diseases with a fixed latent period in a spatially continous domain. Bull. Math. Biol. 71, 2048–2079 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Liang, X., Yi, Y., Zhao, X.-Q.: Spreading speeds and traveling waves for periodic evolution systems. J. Differ. Equ. 231, 57–77 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Boston (1995)

    MATH  Google Scholar 

  22. Ruan, S.: Spatial-temporal dynamics in nonlocal epidemiological models. In: Takeuchi, Y., Sato, K., Iwasa, Y. (eds.) Mathematics for Life Science and Medicine, pp. 97–122. Springer, Berlin (2007)

    Google Scholar 

  23. Shen, W.: Existence, uniqueness and stability of generalized traveling waves in time dependent monostable equations. J. Dyn. Differ. Equ. 23, 1–44 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Shu, H., Pan, X., Wang, X.-S., Wu, J.: Traveling waves in epidemic models: non-monotone diffusive systems with non-monotone incidence rates. J. Dyn. Differ. Equ. 31, 883–901 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Soper, H.E.: The interpretation of periodicity in disease prevalence. J. R. Stat. Soc. 92, 34–73 (1929)

    MATH  Google Scholar 

  26. Wang, H., Wang, X.-S.: Traveling wave phenomena in a Kermack-McKendrick SIR model. J. Dyn. Differ. Equ. 28, 143–166 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Wang, S.-M., Feng, Z., Wang, Z.-C., Zhang, L.: Periodic traveling wave of a time periodic and diffusive epidemic model with nonlocal delayed transmission. Nonlinear Anal. Real World Appl. 55, 103117 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Wang, X.-S., Wang, H., Wu, J.: Traveling waves of diffusive predator-prey systems: disease outbreak propagation. Discrete Contin. Dyn. Syst. 32, 3303–3324 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Wang, Z.-C., Wu, J.: Traveling waves of a diffusive Kermack-McKendrick epidemic model with nonlocal delayed transmission. Proc. Roy. Soc. A 466, 237–261 (2010)

    MATH  Google Scholar 

  30. Wang, Z.-C., Wu, J.: Traveling waves in a bio-reator model with stage-strucure. J. Math. Anal. Appl. 385, 683–692 (2012)

    MathSciNet  Google Scholar 

  31. Wang, Z.-C., Wu, J., Liu, R.: Traveling waves of the spread of avian influenza. Proc. Am. Math. Soc. 140, 3931–3946 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Wang, Z.-C., Zhang, L., Zhao, X.-Q.: Time periodic traveling waves for a periodic and diffusive SIR epidemic model. J. Dyn. Differ. Equ 30(1), 379–403 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Weinberger, H.F.: Long-time behavior of a class of biological model. SIAM J. Math. Anal. 13, 353–396 (1982)

    MathSciNet  MATH  Google Scholar 

  34. Wu, C., Weng, P.: Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model. Discrete Contin. Dyn. Syst. Ser. B 15, 867–892 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Zhang, L., Wang, Z.-C., Zhao, X.-Q.: Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period. J. Differ. Equ. 258, 3011–3036 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Zhang, L., Wang, Z.-C., Zhao, X.-Q.: Propagation dynamics of a time periodic and delayed reaction-diffusion model without quasi-monotonicity. Trans. Am. Math. Soc. 372, 1751–1782 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, L., Wang, Z.-C., Zhao, X.-Q.: Time periodic traveling wave solutions for a Kermack-McKendrick epidemic model with diffusion and seasonality. J. Evolut. Equ. 20, 1029–1059 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Zhang, T.: Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations. J. Differ. Equ. 262, 4724–4770 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Zhao, L., Wang, Z.-C.: Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages. IMA J. Appl. Math. 81, 795–823 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Zhao, L., Wang, Z.-C., Ruan, S.: Traveling wave solutions of a two-group epidemic model with latent period. Nonlinearity 30, 1287–1325 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Zhao, L., Wang, Z.-C., Ruan, S.: Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. J. Math. Biol. 77, 1871–1915 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Zhao, X.-Q.: Dynamical Systems in Population Biology. Spring, New York (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank three anonymous reviewers for their valuable comments and suggestions helping to the improvement of the manuscript. The first author was partially supported by NNSF of China (11801244), the second author was partially supported by NNSF of China (12071193, 11731005), and the third author was partially supported by NNSF of China (11701242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Cheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Wang, ZC. & Zhang, L. Propagation dynamics for a time-periodic reaction–diffusion SI epidemic model with periodic recruitment. Z. Angew. Math. Phys. 72, 142 (2021). https://doi.org/10.1007/s00033-021-01575-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01575-x

Keywords

Mathematics Subject Classification

Navigation