Skip to main content
Log in

Free surface profiles of near-critical instabilities in open channel flows: undular hydraulic jumps

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

When the Froude number F of a free-surface flow ranges between 0.3 and 3, the flow is unstable and frequently characterised by free surface undulations, with the undular hydraulic jump being a seminal flow in hydro-environmental mechanics. The presence of the free surface undulations significantly affects the flow field, with major velocity and pressure field redistributions between successive crests and troughs. All the current theoretical models to simulate undular hydraulic jumps are limited to two-dimensional flow conditions, ignoring all the relevant three-dimensional flow effects, namely shock-wave drag, turbulent breaking and turbulent stresses. These aspects are critically accounted for in this review article, where a depth-averaged Boussinesq model which approximately accounted for 3D flow effects was presented, constituting the first attempt in this line. The model predictions were compared with experimental results from different sources for F1 < 1.5, with F1 the inflow Froude unnumber, resulting a reasonable agreement with observations. The curvature distribution parameter was found to controlling the wave length, and an approximate value was obtained based on ideal fluid flow computations. The new depth-averaged model did not include the effect of flow concentration in the centerline, observed physically, but this 3D feature is analysed at the first wave crest based on an improved treatment of flow curvature, highlighting the impact of the ratio qCL/q on the velocity profile features with qCL the centerline discharge. The main limitation of the new model, presented in this critical review, originated from approximating a complex 3D flow by a depth-averaged model. However, the predictions with the new approximate treatment of 3D effects produced better results than those previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Montes JS (1986) A study of the undular jump profile. In: 9th Australasian Fluid Mechanic Conference Auckland, 148–151.

  2. Montes JS (1998) Hydraulics of open channel flow. ASCE Press, Reston

    Google Scholar 

  3. Chanson H (2004) The hydraulics of open channel flows: an introduction. Butterworth-Heinemann, Oxford

    Google Scholar 

  4. Chanson H (2010) Undular tidal bores: basic theory and free-surface characteristics. J Hydraul Eng ASCE 136(11):940–944. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000264

    Article  Google Scholar 

  5. Castro-Orgaz O, Hager WH (2019) Shallow water hydraulics. Doi: https://doi.org/10.1007/978-3-030-13073-2, 563 pages, Springer, Berlin

  6. Chanson H (1996) Free-surface flows with near-critical flow conditions. Can J Civ Eng 23(6):1272–1284. https://doi.org/10.1139/l96-936

    Article  Google Scholar 

  7. Lemoine R (1948) Sur les Ondes Positives de Translation dans les Canaux et sur le Ressaut Ondulé de Faible Amplitude. (On the Positive Surges in Channels and on the Undular Jumps of Low Wave Height.) Jl La Houille Blanche, 183–185 (in French)

  8. Riquois R, Ract-Madoux X (1965) Intumescences Observées sur le Canal d'Amenée de la Chute d'Oraison lors des Variations Rapides de Charge. (Surges observed in the Oraison Hydropower Canal during Rapid Discharge Variations.). In: Proceedings of 11th IAHR Biennial Congress, Leningrad, Russia, paper 3.53, 15 pages (in French)

  9. Cunge JA (1966) Comparaison des Résultats des Essais d'Intumescences Effectués sur le Modèle Réduit et sur le Modèle Mathématique du Canal Oraison-Manosque. (Comparison of Positive Surge Results between Physical Modelling and Numerical Modelling of the Oraison-Manosque Canal.) Journal La Houille Blanche, No. 1, 55–69 & 79 (In French)

  10. Treske A (1994) Undular Bores (Favre-Waves) in open channels - experimental studies. J Hydraul Res IAHR, 32(3): 355–370. Discussion: 33(3), 274–278, 1995

  11. Chanson H, Montes JS (1995) Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J Hydraulic Eng 121(2): 129–144; 123(2), 161–164

  12. Koch C, Chanson H (2008) Turbulent mixing beneath an undular bore front. J Coastal Res 24(4):999–1007. https://doi.org/10.2112/06-0688.1

    Article  Google Scholar 

  13. Serre F (1953) Contribution à l'étude des écoulements permanents et variables dans les canaux (Contribution to the study of steady and unsteady channel flows). La Houille Blanche 8(6–7), 374–388; 8(12), 830–887 (in French)

  14. Green AE, Naghdi PM (1976) Directed fluid sheets. Proc R Soc Lond A 347:447–473

    Article  Google Scholar 

  15. Green AE, Naghdi PM (1976) A derivation of equations for wave propagation in water of variable depth. J Fluid Mech 78:237–246

    Article  Google Scholar 

  16. Su CH, Gardner CS (1969) KDV equation and generalizations. Part III. Derivation of Korteweg-de Vries equation and Burgers equation. J Math Phys 10(3): 536–539

  17. Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A fully nonlinear Boussinesq model for surface waves 1: highly nonlinear unsteady waves. J Fluid Mech 294:71–92

    Article  Google Scholar 

  18. Marchi E (1963) Contributo allo studio del risalto ondulato (Contribution to the study of undular jumps). Giornale del Genio Civile 101(9):466–476 (in Italian)

    Google Scholar 

  19. Keulegan GH, Patterson GW (1940) Mathematical theory of irrotational translation waves. J Res Nat Bur Stand 24(1):47–101

    Article  Google Scholar 

  20. Peregrine DH (1966) Calculations of the development of an undular bore. J Fluid Mech 25(2):321–330

    Article  Google Scholar 

  21. Peregrine DH (1967) Long waves on a beach. J Fluid Mech 27(5):815–827

    Article  Google Scholar 

  22. Castro-Orgaz O, Chanson H (2020) Undular and broken surges in dam-break flows: a review of wave breaking strategies in a Boussinesq-type framework. Environ Fluid Mech 20(6):1383–1416

    Article  Google Scholar 

  23. Chanson, H. (1995). Flow characteristics of undular hydraulic jumps: Comparison with near-critical flows. Res. Rep. CH45/95. Dept. Civ. Engng., The University of Queensland, Brisbane, Australia

  24. Donnelly C, Chanson H (2005) Environmental Impact of Undular Tidal Bores in Tropical Rivers. Environ Fluid Mech 5(5):481–494. https://doi.org/10.1007/s10652-005-0711-0

    Article  Google Scholar 

  25. Rouse H (1938) Fluid mechanics for hydraulic engineers. McGraw-Hill, New York

    Google Scholar 

  26. Liggett JA (1994) Fluid mechanics. McGraw-Hill, New York

    Google Scholar 

  27. Chanson H (2011) Tidal Bores, Aegir, Eagre, Mascaret, Pororoca: Theory and Observations. World Scientific, Singapore, 220 pages. ISBN: 978-981-4335-41-6/981-4335-41-X

  28. Chanson H (2000) Boundary shear stress measurements in undular flows: application to standing wave bed forms. Water Resour Res 36(10):3063–3076. https://doi.org/10.1029/2000WR900154

    Article  Google Scholar 

  29. Fawer C (1937) Étude de quelques écoulements permanents à filets courbes (Study of some steady flows with curved streamlines). Thesis, Université de Lausanne. La Concorde, Lausanne (in French)

  30. Montes JS, Chanson H (1998) Characteristics of undular hydraulic jumps: results and calculations. J Hydraul Eng 124(2):192–205

    Article  Google Scholar 

  31. Ohtsu I, Yasuda Y, Gotoh H (2001) Hydraulic condition for undular jump formations. J Hydraul Res 39(2): 203–209; 40(3), 379–384

  32. Ben Meftah M, De Serio F, Mossa M, Pollio A (2007) Analysis of the velocity field in a large rectangular channel with lateral shockwave. Environ Fluid Mech 7(6):519–536. https://doi.org/10.1007/s10652-007-9034-7

    Article  Google Scholar 

  33. Reinauer R, Hager WH (1995) Non-breaking undular hydraulic jump. J Hydraul Res 33(5): 1–16; 34(2): 279–287; 34(4): 567–573

  34. Ohtsu I, Yasuda Y, Gotoh H (2003) Flow conditions of undular hydraulic jumps in horizontal rectangular channels. J Hydraul Eng 129(12):948–955

    Article  Google Scholar 

  35. Gotoh H, Yasuda Y, Ohtsu I (2005) Effect of channel slope on flow characteristics of undular hydraulic jumps. Trans Ecol Environ 83(1):33–42

    Google Scholar 

  36. Boussinesq J (1877) Essai sur la théorie des eaux courantes (Essay on the theory of flowing water). Mémoires présentés par Divers Savants á l’Académie des Sciences Paris 23(1):1–608 (in French)

    Google Scholar 

  37. Iwasa Y (1955) Undular jump and its limiting conditions for existence. In: Proceedings of 5th Japan National Congress Applied Mechanic II(14), 315–319

  38. Mandrup-Andersen, V. (1978). Undular hydraulic jump. J. Hydrau Div ASCE 104(HY8), 1185–1188; 105(HY9), 1208–1211

  39. Hager WH, Hutter K (1984) On pseudo-uniform flow in open channel hydraulics. Acta Mech 53(3–4):183–200

    Article  Google Scholar 

  40. Benjamin TB, Lighthill MJ (1954) On cnoidal waves and bores. Proc Roy Soc Lond A 224:448–460

    Article  Google Scholar 

  41. Castro-Orgaz O, Chanson H (2011) Near-critical free-surface flows: Real fluid flow analysis. Environ Fluid Mech 11(5):499–516

    Article  Google Scholar 

  42. Bose S, Castro-Orgaz O, Dey S (2012) Free surface profiles of undular hydraulic jumps. J Hydr Eng 138(4):362–366

    Article  Google Scholar 

  43. Hosoda T, Tada A (1994) Free surface profile analysis on open channel flow by means of 1-D basic equations with effect of vertical acceleration. Annu J Hydraul Eng JSCE 38:457–462 (in Japanese)

    Article  Google Scholar 

  44. Hosoda, T., Muramoto, Y., Miyamoto, M. (1997). Bottom shear stress of flows over a wavy bed by using depth averaged flow equations. J Hydraul Environ Eng JSCE, 558/II-38, 81–89 (in Japanese)

  45. Grillhofer W, Schneider W (2003) The undular hydraulic jump in turbulent open channel flow at large Reynolds numbers. Phys Fluids 15(3):730–735

    Article  Google Scholar 

  46. Castro-Orgaz O (2010) Weakly undular hydraulic jump: effects of friction. J Hydraul Res 48(4):453–465

    Article  Google Scholar 

  47. Castro-Orgaz O, Hager WH, Dey S (2015) Depth-averaged model for the undular hydraulic jump. J Hydraul Res 53(3):351–363

    Article  Google Scholar 

  48. Castro-Orgaz O, Hager WH (2011) Vorticity equation for the streamline and the velocity profile. J Hydraul Res 49(6):775–783

    Article  Google Scholar 

  49. Furuya Y, Nakamura L (1968) A semi-integrated momentum method for the auxiliary equation. In: Proceedings of Stanford conference AFOSR-IFP computation of boundary layers 1, 235–246

  50. White FM (1991) Viscous fluid flow. McGraw-Hill, New York

    Google Scholar 

  51. Chaudhry MH (2008) Open-channel flow, 2nd edn. Springer, New York

    Book  Google Scholar 

  52. Chanson, H. (2009). Current knowledge. In: Hydraulic jumps and related phenomena. a survey of experimental results. Eur J Mech B/Fluids, 28(2), 191–210. doi: https://doi.org/10.1016/j.euromechflu.2008.06.004

  53. Iwasa Y (1956) Analytical considerations on cnoidal and solitary waves. Memoires Faculty of Engineering, Kyoto University 17(4): 264–276

  54. Carter JD, Cienfuegos R (2011) The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations. Eur J Mech B/Fluids 30(3):259–268

    Article  Google Scholar 

  55. Tanaka M (1986) The stability of solitary waves. Phys Fluids 29:650–655

    Article  Google Scholar 

  56. Boadway JD (1976) Transformation of elliptic partial differential equations for solving two dimensional boundary value problems in fluid flow. Int J Num Meth Engng 10(3):527–533

    Article  Google Scholar 

  57. Montes JS (1992) A potential flow solution for the free overfall. Proc ICE 96(6): 259–266; 112(1): 85–87

  58. Montes JS (1994) Potential flow solution to the 2D transition form mild to steep slope. J Hydraul Eng 120(5): 601–621, 121(9): 681–682

  59. Chanson, H. (1993). Characteristics of Undular Hydraulic Jumps. Research Report No. CE146, Dept. of Civil Engineering, The University of Queensland, Brisbane, Australia, 109 pages.

  60. Khan AA, Steffler P (1996) Physically-based hydraulic jump model for depth-averaged computations. J Hydraul Eng 122(10):540–548

    Article  Google Scholar 

  61. Cantero-Chinchilla FN, Bergillos RJ, Gamero P, Castro-Orgaz O, Cea L, Hager WH (2020) Vertically-averaged and moment equations for dam-break wave modeling: shallow water hypotheses. Water 12(11):3232. https://doi.org/10.3390/w12113232

    Article  Google Scholar 

  62. Rodi W (1993) Turbulence models and their application in hydraulics, 3rd edn. IAHR Monograph, Balkema

    Google Scholar 

  63. Svedsen IA, Veeramony J, Bakunin J, Kirby JT (2000) The flow in weak turbulent hydraulic jumps. J Fluid Mech 418:25–57

    Article  Google Scholar 

  64. Castro-Orgaz O (2010) Approximate modeling of 2D curvilinear open channel flows. J Hydraulic Res 48(2):213–224

    Article  Google Scholar 

  65. Castro-Orgaz O, Hager WH (2010) Moment of momentum equation for curvilinear free-surface flow. J Hydraul Res 48(5):620–631

    Article  Google Scholar 

  66. Imai S, Nakagawa T (1992) On transverse variation of velocity and bed shear stress in hydraulic jumps in a rectangular open channel. Acta Mech 93:191–203

    Article  Google Scholar 

  67. Chanson H (1995) Ressaut Hydraulique Ondulé: Mythes et Réalités. (Undular Hydraulic Jump: Myths and Realities). J La Houille Blanche (7), 4–65. doi:https://doi.org/10.1051/lhb/1995068

  68. Chanson H (2005) Physical modelling of the flow field in an undular tidal bore. J Hydraul Res 43(3):234–244

    Article  Google Scholar 

Download references

Acknowledgements

The Authors would like to dedicate this article to Prof. J. Sergio Montes, University of Hobart, Tasmania. His work had a deep impact on the Authors’ own work, and the results presented in this research were possible thanks to his pioneering contributions. The Authors would like to express their gratitude to the SI Editor, Prof. Subhasish Dey, for his invitation to prepare this review article. The work of the first Author was supported by the Spanish project VAMONOS (CTM2017-85171- C2-1-R) and grant María de Maeztu for Centers and Units of Excellence in R&D (Ref. CEX2019-000968-M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castro-Orgaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Development of 2D Boussinesq equations with boundary shear

Appendix: Development of 2D Boussinesq equations with boundary shear

The viscous velocity distribution for two-dimensional wavy free surface flow is [30]

$$ V = V_{s} \mu ^{N} {\text{exp}}\left( { - \varepsilon _{0} \frac{{1 - \mu ^{{K + 1}} }}{{K + 1}}} \right), $$
(37)

where Vs is the velocity at the free surface, μ = z/h, z the elevation, h the flow depth, K the curvature parameter, N the power-law exponent, hx = dh/dx and hxx = d2h/dx2 and ε0 = hhxx/(1 + hx2). For small arguments of the exponential function, Eq. (37) is approximated by

$$ V = V_{s} \mu ^{N} {\text{exp}}\left( { - \varepsilon _{0} \frac{{1 - \mu ^{{K + 1}} }}{{K + 1}}} \right) \approx V_{s} \mu ^{N} \left( {1 - \varepsilon _{0} \frac{{1 - \mu ^{{K + 1}} }}{{K + 1}}} \right). $$
(38)

Projection of this result into the (x, z) directions yields the velocity components (u, v) [30]

$$ u \approx \left( {1 + N} \right)\frac{q}{h}\mu ^{N} \left[ {1 - \frac{{\varepsilon _{0} }}{{K + 1}}\left( {\frac{{1 + N}}{{K + 2 + N}} - \mu ^{{K + 1}} } \right) - \frac{{\varepsilon _{1} }}{2}\left( {\frac{{N + 1}}{{N + 3}} + \mu ^{2} } \right)} \right], $$
(39)
$$ v \approx \left( {1 + N} \right)\frac{q}{h}\mu ^{{N + 1}} \varepsilon _{1}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} \left[ {1 - \frac{{\varepsilon _{0} }}{{K + 1}}\left( {\frac{{1 + N}}{{K + 2 + N}} - \mu ^{{K + 1}} } \right) - \frac{{\varepsilon _{1} }}{2}\frac{{N + 1}}{{N + 3}}} \right], $$
(40)

and the pressure distribution

$$ \frac{p}{{\rho gh}} = 1 - \mu + \frac{{\varepsilon _{0} \left( {1 + N} \right)^{2} }}{{K + 2N + 1}}\frac{{q^{2} }}{{gh^{3} }}\left( {1 - \mu ^{{1 + 2N + K}} } \right), $$
(41)

where ε1 = hx2/(1 + hx2). Now, the specific momentum S is given by

$$ S = \int\limits_{0}^{h} {\left( {\frac{{V^{2} }}{g} + \frac{p}{{\rho g}}} \right){\text{d}}z} . $$
(42)

From Eq. (38)

$$ V^{2} \approx \left( {1 + N} \right)^{2} \frac{{q^{2} }}{{h^{2} }}\mu ^{{2N}} \left[ {1 - \frac{{2\varepsilon _{0} }}{{K + 1}}\left( {\frac{{1 + N}}{{K + 2 + N}} - \mu ^{{K + 1}} } \right) - \varepsilon _{1} \frac{{N + 1}}{{N + 3}}} \right]. $$
(43)

Integration of Eq. (43) yields

$$ \int\limits_{0}^{h} {\frac{{V^{2} }}{g}{\text{d}}z} = \left( {1 + N} \right)^{2} \frac{{q^{2} }}{{gh}}\left( {\frac{1}{{2N + 1}} - \frac{{2\varepsilon _{0} }}{{K + 1}}\left( {\frac{{1 + N}}{{K + 2 + N}}\frac{1}{{2N + 1}} - \frac{1}{{K + 2N + 2}}} \right) - \varepsilon _{1} \frac{{N + 1}}{{N + 3}}\frac{1}{{2N + 1}}} \right) $$
(44)

After manipulation, Eq. (44) is rewritten as

$$ \int\limits_{0}^{h} {\frac{{V^{2} }}{g}{\text{d}}z} = \beta \frac{{q^{2} }}{{gh}}\left( {1 - \frac{{2\varepsilon _{0} }}{{K + 1}}\left( {\frac{{1 + N}}{{K + 2 + N}} - \frac{{2N + 1}}{{K + 2N + 2}}} \right) - \varepsilon _{1} \frac{{N + 1}}{{N + 3}}} \right), $$
(45)

where β is the Boussinesq momentum velocity correction coefficient for the power-law velocity profile,

$$ \beta = \frac{{(1 + N)^{2} }}{{2N + 1}}. $$
(46)

Using Eq. (41) one obtains

$$ \int\limits_{0}^{h} {\frac{p}{{\rho g}}{\text{d}}z} = \frac{{h^{2} }}{2} + \frac{{\varepsilon _{0} \left( {1 + N} \right)^{2} }}{{K + 2N + 1}}\frac{{q^{2} }}{{gh}}\left( {1 - \frac{1}{{2 + 2N + K}}} \right) = \frac{{h^{2} }}{2} + \beta \varepsilon _{0} \frac{{2N + 1}}{{K + 2N + 2}}\frac{{q^{2} }}{{gh}}. $$
(47)

Inserting Eqs. (45) and (47) in Eq. (42) yields for the specific momentum S

$$ \begin{aligned} S & = \beta \frac{{q^{2} }}{{gh}}\left( {1 - \frac{{2\varepsilon _{0} }}{{K + 1}}\left( {\frac{{1 + N}}{{K + 2 + N}} - \frac{{2N + 1}}{{K + 2 + 2N}}} \right) - \varepsilon _{1} \frac{{N + 1}}{{N + 3}}} \right) + \frac{{h^{2} }}{2} + \beta \varepsilon _{0} \frac{{2N + 1}}{{K + 2N + 2}}\frac{{q^{2} }}{{gh}} \\ & = \frac{{h^{2} }}{2} + \beta \frac{{q^{2} }}{{gh}}\left( {1 + \varepsilon _{0} \left( {\frac{{2N + 1}}{{K + 2 + 2N}} - \frac{{2\left( {N + 1} \right)}}{{\left( {K + 1} \right)\left( {K + 2 + N} \right)}} + \frac{{2\left( {1 + 2N} \right)}}{{\left( {K + 1} \right)\left( {K + 2 + 2N} \right)}}} \right) - \varepsilon _{1} \frac{{N + 1}}{{N + 3}}} \right) \\ & = \frac{{h^{2} }}{2} + \beta \frac{{q^{2} }}{{gh}}\left( {1 + \varepsilon _{0} \left( {\frac{2}{{K + 2 + N}} + \frac{{2NK^{2} - K^{2} + 2N^{2} K + 5NK - 3K + 2N^{2} + 3N - 2}}{{\left( {K + 1} \right)\left( {K + N + 2} \right)\left( {K + 2 + 2N} \right)}}} \right) - \varepsilon _{1} \frac{{N + 1}}{{N + 3}}} \right) \\ & = \frac{{h^{2} }}{2} + \beta \frac{{q^{2} }}{{gh}}\left( {1 + \varepsilon _{0} \left( {\frac{2}{{K + 2 + N}} - \frac{{1 - 2N}}{{K + 2 + 2N}}} \right) - \varepsilon _{1} \frac{{N + 1}}{{N + 3}}} \right). \\ \end{aligned} $$
(48)

The depth-averaged specific energy head E is

$$ E = \frac{1}{h}\int\limits_{0}^{h} {\left( {\frac{{V^{2} }}{{2g}} + \frac{p}{{\rho g}} + z} \right){\text{d}}z} . $$
(49)

Using Eqs. (45) and (47), Eq. (49) yields

$$ \begin{aligned} E & = h + \beta \frac{{q^{2} }}{{2gh^{2} }}\left( {1 - \frac{{2\varepsilon _{0} }}{{K + 1}}\left( {\frac{{1 + N}}{{K + 2 + N}} - \frac{{2N + 1}}{{K + 2N + 2}}} \right) + 2\varepsilon _{0} \frac{{2N + 1}}{{K + 2N + 2}} - \varepsilon _{1} \frac{{N + 1}}{{N + 3}}} \right) \\ & = h + \beta \frac{{q^{2} }}{{2gh^{2} }}\left( {1 + \frac{{2\varepsilon _{0} }}{{K + 2N + 2}}\left( {\frac{{2N + 1}}{{K + 1}} - \frac{{\left( {N + 1} \right)\left( {K + 2N + 2} \right)}}{{\left( {K + N + 2} \right)\left( {K + 1} \right)}} + 2N + 1} \right) - \varepsilon _{1} \frac{{N + 1}}{{N + 3}}} \right) \\ & = h + \beta \frac{{q^{2} }}{{2gh^{2} }}\left( {1 + \frac{{2\varepsilon _{0} }}{{K + 2N + 2}}\left( {\frac{N}{{K + N + 2}} + 2N + 1} \right) - \varepsilon _{1} \frac{{N + 1}}{{N + 3}}} \right) \\ & = h + \beta \frac{{q^{2} }}{{2gh^{2} }}\left( {1 + \frac{{2\varepsilon _{0} }}{{K + 2N + 2}}\left( {1 + N\left( {2 + \frac{1}{{K + N + 2}}} \right)} \right) - \varepsilon _{1} \frac{{N + 1}}{{N + 3}}} \right). \\ \end{aligned} $$
(50)

Equations (48) and (50) are the extended momentum and energy equations for viscous wavy free surface flow. Some typos in the original paper by Montes and Chanson [30] makes the detailed derivation presented here useful.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Orgaz, O., Chanson, H. Free surface profiles of near-critical instabilities in open channel flows: undular hydraulic jumps. Environ Fluid Mech 22, 275–300 (2022). https://doi.org/10.1007/s10652-021-09797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-021-09797-3

Keywords

Navigation