Skip to main content
Log in

Fractal Treatment of Melt Viscosity of Polypropylene/Globular Carbon Nanocomposites

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

It is shown that theoretical models elaborated for polymer microcomposites are not capable to describe variation of the melt viscosity of polypropylene/globular carbon nanocomposites at change in the nanofiller contents. Then a fractal model of viscosity is proposed, which takes into account the sizes of nanofiller aggregates and their surface structure. This model shows a good agreement with experimental data. It demonstrates a fundamental difference in the behavior of melt viscosity for polymer micro- and nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Mikitaev, A.K., Kozlov, G.V., and Zaikov, G.E., Polymer Nanocomposites: Variety of Structural Forms and Applications, New York: Nova Science, 2008.

  2. Mills, N.J., The Rheology of Filled Polymers, J. Appl. Polymer Sci., 1971, vol. 15, no. 11, pp. 2791–2805.

  3. Balankin, A.S., Sinergetika deformiruemogo tela(Synergetics of Deformable Body), Moscow: MO SSSR, 1991.

  4. Kozlov, G.V. and Sanditov, D.S., Angarmonicheskie effekty i fiziko-mekhanicheskie svoistva polimerov (Anharmonic Effects and Physical-Mechanical Properties of Polymers), Novosibirsk: Nauka, 1994.

  5. Kozlov, G.V., Yanovsky, Yu.G., and Zaikov, G.E.,Particulate-Filled Polymer Nanocomposites. Structure,Properties, Perspectives, New York: Nova Science, 2014.

  6. Mikitaev, A.K. and Kozlov, G.V., How to Define a Nanocomposite by the Example of Polymer/Organoclay Nanostructured Composites,Phys. Solid State, 2017, vol. 59, no. 7, pp. 1446–1449.

  7. Kozlov, G.V., Dolbin, I.V., and Zaikov, G.E., The Fractal Physical Chemistry of Polymer Solutions and Melts, Toronto, New Jersey: Apple Academic, 2014.

  8. Mikitaev, A.K. and Kozlov, G.V., The Role of Interface Surfaces in the Formation of the Properties of Polymer Nanocomposites, J. Surf. Investig. X-Ray, Synchrotron Neutron Techniq., 2016, vol. 10, no. 1, pp. 250–253.

  9. Mikitaev, A.K. and Kozlov, G.V., Structural Model for the Reinforcement of Polymethyl Methacrylate/Carbon Nanotube Nanocomposites at an Ultralow Nanofiller Content, Techn. Phys., 2016, vol. 61, no. 10, pp. 1541–1545.

  10. Kozlov, G.V. and Zaikov, G.E., Structure of the Polymer Amorphous State, Utrecht, Boston: Brill Academic, 2004.

  11. Gold’stein, R.V. and Mosolov, A.B., Flows of Fractally-Broken Ice,Dokl. AN, 1992, vol. 324, no. 3, pp. 576–581.

  12. Kozlov, G.V. and Dolbin, I.V., Percolation Models for Describing the Degree of Amplification of the Elastic Modulus of High-Filled Polyurethane/Graphene Nanocomposites, Prikl. Fiz., 2017, vol. 3, pp. 96–100.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Dolbin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, G.V., Dolbin, I.V. Fractal Treatment of Melt Viscosity of Polypropylene/Globular Carbon Nanocomposites. J. Engin. Thermophys. 30, 163–169 (2021). https://doi.org/10.1134/S1810232821010124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821010124

Navigation