Skip to main content
Log in

Global Solutions and Stability Properties of the 5th Order Gardner Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this work, we deal with the initial value problem of the 5th-order Gardner equation in \({\mathbb {R}}\), presenting the local well-posedness result in \(H^2({\mathbb {R}})\). As a consequence of the local result, in addition to \(H^2\)-energy conservation law, we are able to prove the global well-posedness result in \(H^2({\mathbb {R}})\). Finally as a direct application, we prove that some globally defined functions, e.g. breather solutions of 5th order Gardner equation, are \(H^2({\mathbb {R}})\) stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Such a spatial translation is performed in order to provide a simpler expression of the N-soliton solution in Sect. 3. On the other hand, it is known that not only the first order linear term but also the third order term of the linear part in (1.1) are negligible in the study of the well-posedness theory compared to the fifth order term.

  2. Here P is a appropriate truncation operator in the Fourier space, thus \(P_{high}u\) means the high frequency (\(|\xi | \gg 1\)) localized portion of u, while the frequency support of \(P_{\le 0}u\) is in \([-1,1]\).

  3. The \(X^{s,b}\) spaces are equipped with the norm

    $$\begin{aligned} \left\Vert f\right\Vert _{X^{s,b}} = \left\Vert \langle \xi \rangle ^s\langle \tau -\xi ^5\rangle ^b \widetilde{f}\right\Vert _{L_{\tau ,\xi }^2},\end{aligned}$$

    where \(\widetilde{f}\) is the space time Fourier coefficient (also denoted by \({\mathcal {F}}(f)\)) and \(\langle \cdot \rangle = (1+|\cdot |^2)^{\frac{1}{2}}\). For more details, see Sect. 2.

  4. It suffices to regard only \(\partial _x^5\) as a linear part of (1.1), since \(\partial _x^3\) is negligible in a sense of the dispersion effect.

  5. The persistence of regularities ensures the global well-posedness in \(H^s({\mathbb {R}})\), \(s \ge 2\).

  6. Originally, we have \(w(\xi ) = -\xi ^5 +10\mu ^2\xi ^3\) corresponding to the linear part of (1.1). However, for fixed \(\mu \) and for large frequency \(|\xi | \gg 1\), the third order term are negligible compared to the fifth order term.

  7. The basic method is similar to that used in [35], but it is chosen to avoid complicated calculations in the energy estimate.

  8. Thanks to the symmetry of frequencies, our assumption that \(\xi _1\) is the minimum frequency does not lose of the generality.

  9. One can see that the worst bound comes from the low frequency with high modulation case (\(j_4 = j_{max} > j_{med} + 5\)).

  10. We use, here, \(2^{j_{max}} \ge 2^{2k_4}\) to deal with a maximum modulation, since our purpose is to obtain the local well-posedness only in \(H^s({\mathbb {R}})\), \(s \ge 2\). However, one may obtain the better result by performing a delicate calculation in addition to \(2^{j_{max}} \ge |H|\), instead of \(2^{j_{max}} \ge 2^{2k_4}\). For the same reason, so the high-high-low \(\Rightarrow \) low case below as well.

  11. The case \(|\xi _1 + \xi _2| \sim 2^{k_2}\), when \(|k_1-k_2| \le 4\), exists, if both \(\xi _1\) and \(\xi _2\) have same sign. However, under this condition, one has the same conclusion as (2.29).

  12. The case \(|\xi _1 + \xi _2| \le 1\) cannot happen when \(k_1 =0\) and \(k_2 \ge 1\).

  13. A small difference between \({\mathcal {P}}_1\) and F in Lemma 6.4 in [49] does not make any trouble. Indeed, our setting of \(u_h\) corresponds to (2.1), so that one can immediately apply the argument in the proof of Lemma 6.4 in [49] to our case. Moreover, the cubic term with one derivative in \({\mathcal {N}}_2(u_{ap})\) can be dealt with similarly as \({{\mathcal {S}}}{{\mathcal {N}}}(u_{ap})\).

References

  1. Ablowitz, M., Clarkson, P.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, vol. 149. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  2. Alejo, M.A.: On the ill-posedness of the Gardner equation. J. Math. Anal. Appl. 396(1), 256–260 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Alejo, M.A.: Nonlinear stability of Gardner breathers. J. Differ. Equ. 264(2), 1192–1230 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Alejo, M.A., Cardoso, E.: On the ill-posedness of the 5th-order Gardner equation. São Paulo J. Math. Sci. (2019). https://doi.org/10.1007/s40863-019-00150-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Alejo, M.A., Cardoso, E.: Dynamics of Breathers in the Gardner hierarchy: Universality of the variational characterization, preprint arXiv:1901.10409v1

  6. Alejo, M.A., Cortez, M. F., Kwak, C., Muñoz, C.: On the dynamics of zero-speed solutions for Camassa-Holm type equations. Int. Math. Res. Not. IMRN 2021(9), 6543–6585 (2021)

  7. Alejo, M.A., Muñoz, C.: Nonlinear stability of mKdV breathers. Commun. Math. Phys. 37, 2050–2080 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Alejo, M.A., Muñoz, C.: Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers. Anal. PDE 8(3), 629–674 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Alejo, M.A., Muñoz, C., Palacios, J.M.: On the variational structure of breather solutions I: Sine-Gordon equation. J. Math. Anal. Appl. 453(2), 1111–1138 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Alejo, M.A., Muñoz, C., Palacios, J. M.: On the variational structure of breather solutions II: Periodic mKdV equation. Electron. J. Differ. Equ., Paper No. 56, p 26 (2017)

  11. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Parts I, II. Geom. Funct. Anal. 3 (1993) 107–156, 209–262

  12. Bourgain, J.: On the Cauchy problem for periodic KdV-type equations, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993). J. Fourier Anal. Appl. Special Issue, 17–86 (1995)

  13. Burq, N., Gérard, P., Tzvetkov, N.: An instability property of the nonlinear Schrödinger equation on \(S^d\). Math. Res. Lett. 9(2–3), 323–335 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Burq, N., Gérard, P., Tzvetkov, N.: Two singular dynamics of the nonlinear Schrödinger equation on a plane domain. Geom. Funct. Anal. 13(1), 1–19 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Cavalcante, M., Kwak, C.: The initial-boundary value problem for the Kawahara equation on the half-line. Nonlinear Differ. Equ. Appl. 27, 45 (2020). https://doi.org/10.1007/s00030-020-00648-6

  16. Cavalcante, M., Kwak, C.: Local well-posedness of the fifth-order KdV-type equations on the half-line. Commun. Pure Appl. Anal. 18(5), 2607–2661 (2019)

  17. Chen, W., Guo, Z.: Global well-posedness and I-method for the fifth-order Korteweg-de Vries equation. J. Anal. Math. 114, 121–156 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Chen, W., Li, J., Miao, C., Wu, J.: Low regularity solutions of two fifth-order KdV type equations. J. Anal. Math. 107, 221–238 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Christ, M., Colliander, J., Tao, T.: Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math. 125(6), 1235–1293 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Christ, M., Colliander, J., Tao, T.: A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev space of negative order. J. Funct. Anal. 254, 368–395 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Cui, S., Tao, S.: Strichartz estimates for dispersive equations and solvability of the Kawahara equation. J. Math. Anal. Appl. 304, 683–702 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Gardner, C.S., Kruskal, M.D., Miura, R.: Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9(8), 1204–1209 (1968)

  23. Gomes, J.F., França, G.S., Zimerman, A.H.: Nonvanishing boundary condition for the mKdV hierarchy and the Gardner equation. J. Phys. A: Math. Theor. 45, 015207 (2012)

  24. Guo, Z.: Local well-posedness and a priori bounds for the modified Benjamin-Ono equation. Adv. Differ. Equ. 16(11–12), 1087–1137 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Guo, Z.: Local well-posedness for dispersion generalized Benjamin-Ono equations in Sobolev spaces. J. Differ. Equ. 252, 2053–2084 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Guo, Z., Kwak, C., Kwon, S.: Rough solutions of the fifth-order KdV equations. J. Funct. Anal. 265, 2791–2829 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Guo, Z., Oh, T.: Non-existence of solutions for the periodic cubic NLS below \(L^2\). Int. Math. Res. Not. IMRN 2018(6), 1656–1729 (2018)

  28. Grimshaw, R., Slunyaev, A., Pelinovsky, E.: Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity. Chaos 20(1), 01310201–01310210 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Grünrock, A.: On the hierarchies of higher order mKdV and KdV equations. Cent. Eur. J. Math. 8(3), 500–536 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Guo, Z., Peng, L., Wang, B., Wang, Y.: Uniform well-posedness and inviscid limit for the Benjamin-Ono-Burgers equation. Adv. Math. 228, 647–677 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Ionescu, A., Kenig, C.: Global well-posedness of the Benjamin-Ono equation in low-regularity spaces. J. Amer. Math. Soc. 20(3), 753–798 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Ionescu, A., Kenig, C., Tataru, D.: Global well-posedness of the KP-I initial-value problem in the energy space. Invent. Math. 173(2), 265–304 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Kakutani, T.: Weakly nonlinear Hydromagnetic waves in a cold collision free plasma. J. Phys. Soc. Japan 26, 5 (1969)

    Google Scholar 

  34. Kato, T.: Well-posedness for the fifth order KdV equation. Funkcialaj Ekvacioj 55(1), 17–53 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Kenig, C., Pilod, D.: Well-posedness for the fifth-order KdV equation in the energy space. Trans. Amer. Math. Soc. 367, 2551–2612 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Kenig, C., Pilod, D.: Local well-posedness for the KdV hierarchy at high regularity. Adv. Diff. Eq. 21, 801–836 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Kenig, C.E., Ponce, G., Vega, L.: On the hierarchy of the generalized KdV equations, Singular limits of dispersive waves (Lyon: NATO Adv. Sci. Inst. Ser. B Phys., vol. 320. Plenum, New York 1994, 347–356 (1991)

    Google Scholar 

  38. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Amer. Math. Soc. 4(2), 323–347 (1991)

    MathSciNet  MATH  Google Scholar 

  39. Kenig, C.E., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana U. Math. J 40, 33–69 (1991)

    MathSciNet  MATH  Google Scholar 

  40. Kenig, C.E., Ponce, G., Vega, L.: Higher-order nonlinear dispersive equations. Proc. Amer. Math. Soc. 122(1), 157–166 (1994). https://doi.org/10.2307/2160855

    Article  MathSciNet  MATH  Google Scholar 

  41. Kenig, C., Ponce, G., Vega, L.: A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9, 573–603 (1996)

    MathSciNet  MATH  Google Scholar 

  42. Kenig, C.E., Ponce, G., Vega, L.: On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106(3), 617–633 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Kichenassamy, S., Olver, P.J.: Existence and non-existence of solitary wave solutions to higher order model evolution equations. SIAM J. Math. Anal. 3, 1141–1166 (1992)

    MATH  Google Scholar 

  44. Koch, H., Tataru, D.: A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. IMRN 16 (2007), Art. ID rnm053, 36. DOI https://doi.org/10.1093/imrn/rnm053. MR2353092 (2010d:35307)

  45. Koch, H., Tzvetkov, N.: Nonlinear wave interactions for the Benjamin-Ono equation. Int. Math. Res. Not. 30, 1833–1847 (2005)

    MathSciNet  MATH  Google Scholar 

  46. Koch, H., Tzvetkov, N.: On finite energy solutions of the KP-I equation. Math. Z. 258(1), 55–68 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Kwak, C.: Low regularity Cauchy problem for the fifth-order modified KdV equations on \(\mathbb{T}\). J. Hyperbolic Differ. Equ. 15(3), 463–557 (2018). https://doi.org/10.1142/S0219891618500170

    Article  MathSciNet  MATH  Google Scholar 

  48. Kwak, C.: Local well-posedness for the fifth-order KdV equations on \(\mathbb{T}\). J. Differ. Equ. 260, 7683–7737 (2016). https://doi.org/10.1016/j.jde.2016.02.001

    Article  MathSciNet  MATH  Google Scholar 

  49. Kwon, S.: On the fifth order KdV equation: Local well-posedness and lack of uniform continuity of the solution map. J. Differ. Equ. 245, 2627–2659 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Kwon, S.: Well posedness and Ill-posedness of the Fifth-order modified KdV equation. Electr. J. Diff. Equ. 2008(1), 1–15 (2008)

    MathSciNet  MATH  Google Scholar 

  51. Lamb, G.L.: Elements of Soliton Theory. Pure Appl. Math, Wiley, New York (1980)

  52. Linares, F.: A higher order modified Korteweg-de Vries equation. Comput. Appl. Math. 14(3), 253–267 (1995)

    MathSciNet  MATH  Google Scholar 

  53. Marchant, T.R., Smyth, N.F.: The extended Korteweg-de Vries equation and the resonant flow of a fluid over topography. J. Fluid Mech. 221, 263–288 (1990)

    MathSciNet  MATH  Google Scholar 

  54. Matsuno, Y.: Bilinearization of nonlinear evolution equations: Higher Order mKdV. J. Phys. Soc. Jpn, 49, no. 2 (1980)

  55. Molinet, L., Pilod, D., Vento, S.: Unconditional uniqueness for the modified Korteweg- de Vries equation on the line, to appear in Rev. Mat, Iber (2018)

  56. Molinet, L., Pilod, D., Vento, S.: On unconditional well-posedness for the periodic modified Korteweg-De Vries equation, to appear in J. Math. Soc, Japan (2018)

  57. Molinet, L., Saut, J.C., Tzvetkov, N.: Ill-posedness issues for the Benjamin-Ono and related equations. SIAM J. Math. Anal. 33, 982–988 (2001)

    MathSciNet  MATH  Google Scholar 

  58. Molinet, L., Saut, J.C., Tzvetkov, N.: Well-posed and ill-posedness results for the Kadomtsev-Petviashvili-I equation. Duke Math. J. 115(2), 353–384 (2002)

    MathSciNet  MATH  Google Scholar 

  59. Muñoz, C.: Instability in nonlinear Schrödinger breathers. Proyecciones 36(4), 653–683 (2017)

    MathSciNet  MATH  Google Scholar 

  60. Muñoz, C., Palacios, J. M.: Nonlinear stability of 2-solitons of the Sine-Gordon equation in the energy space. Ann. IHP Analyse Nonlinéaire 36(4), 977–1034 (2019)

  61. Muñoz, C., Ponce, G.: Breathers and the dynamics of solutions to the KdV type equations. Commun. Math. Phys. 367(2), 581–598 (2019)

    MathSciNet  MATH  Google Scholar 

  62. Olver, P.J.: Hamiltonian perturbation theory and water waves. Contemp. Math. 28, 231–249 (1984)

    MathSciNet  MATH  Google Scholar 

  63. Pilod, D.: On the Cauchy problem for higher-order nonlinear dispersive equations. J. Differ. Equ. 245(8), 2055–2077 (2008). https://doi.org/10.1016/j.jde.2008.07.017

    Article  MathSciNet  MATH  Google Scholar 

  64. Ponce, G.: Lax pairs and higher order models for water waves. J. Differ. Equ. 102(2), 360–381 (1993)

    MathSciNet  MATH  Google Scholar 

  65. Tao, T.: Multilinear weighted convolution of \(L^2\) functions and applications to nonlinear dispersive equations. Amer. J. Math. 123(5), 839–908 (2001)

    MathSciNet  MATH  Google Scholar 

  66. Tsugawa, K.: Parabolic smoothing effect and local well-posedness of fifth-order semilinear dispersive equations on torus, Harmonic analysis and nonlinear partial differential equations, 177-193, RIMS Kroku Bessatsu, B60, Res. Inst. Math. Sci. (RIMS), Kyoto, 2016. arXiv:1707.09550 [math.AP]

  67. Wadati, M.: The modified Korteweg-de vries equation. J. Phys. Soc. Jpn. 34(5), 1289–1296 (1973)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulkwang Kwak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. A. was partially funded by Product. CNPq Grant No. 305205/2016-1 and VI PPIT-US program ref. I3C C. Kwak was partially supported by FONDECYT de Postdoctorado 2017 Proyecto No. 3170067 and project France-Chile ECOS-Sud C18E06, and is supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2020R1F1A1A0106876811). The authors are grateful to the editor and anonymous referee for dealing with our manuscript.

Appendices

Appendix A. Proof of Theorem 1.4

The aim of this section is to prove the weak ill-posedness of (1.1) for \(s > 0\), which, in addition to the first author’s recent work [4], completely justifies that the 5th Gardner Eq. (1.1) is a quasilinear equation in the sense that the flow map from data to solutions is not (locally) uniformly continuous for all regularities, see Corollary 1.5. Since the weak-illposedness phenomenon occurs due to the strong high-low interaction in the quadratic nonlinearity with three derivatives, Theorem 1.2 in [49] seems to guarantee the lack of uniform continuity of the flow map associated to (1.1) for \(s > 0\). This section contributes to prove that the Eq. (1.1) is indeed weakly ill-posed for \(s > 0\).

The proof basically follows the argument used in [49], initially introduced by Koch-Tzvetkov [45]. Since the (weak) ill-posedness phenomenon arises from the strong high-low quadratic nonlinearity (high frequency waves with low frequency perturbations), the main part of the proof is identical to the argument in [49]. Thus, we, here, provide an additional estimate to be needed for the other nonlinearities.

In view of the argument presented in Sect. 2.6, it suffices to show the ill-posedness of (2.1) with small initial data.

1.1 A.1 Setting

We first define the approximate solution, which is an ansatz to cause the (weak) ill-posedness phenomenon. Let \(\phi , \widetilde{\phi } \in C_0^{\infty }({\mathbb {R}})\) be smooth bump functions satisfying

$$\begin{aligned}\phi \equiv 1, \quad |x| < 1, \quad \text{ and } \quad \phi \equiv 0, \quad |x| > 2\end{aligned}$$

and

$$\begin{aligned}\widetilde{\phi } \equiv 1, \quad x \in \text{ supp } (\phi ) \quad \text{ and } \quad \widetilde{\phi }\phi \equiv \phi ,\end{aligned}$$

respectively. For \(N \ge 1\) and \(0< \delta < 1\), set

$$\begin{aligned}\phi _{N}(x) := \phi \left( \frac{x}{N^{4+\delta }}\right) , \quad \widetilde{\phi }_{N}(x) := \widetilde{\phi }\left( \frac{x}{N^{4+\delta }}\right) .\end{aligned}$$

Let \(\epsilon > 0\) be a sufficiently small for the initial data to satisfy (2.37). Let

$$\begin{aligned}u_{0,l}^{\pm }(x) := \pm \epsilon N^{-3}\widetilde{\phi }_{N}(x)\end{aligned}$$

and \(u_l^{\pm }(t,x)\) be the solution to (2.1) with the initial data \(u_{0,l}^{\pm }(x)\). Let \(\Phi _N(t) := (N^5-10\mu ^2\lambda ^2N^3)t\) and

$$\begin{aligned} u_h^{\pm }(t,x) := N^{-\frac{4+\delta }{2}-s}\phi _{N}(x) \cos \left( N x -\Phi _N(t) {\mp } t\right) \end{aligned}$$
(A.1)

be a high frequency part of the approximate solution, and thus define the approximate solution as

$$\begin{aligned}u_{ap}^{\pm }(t,x):=u_l^{\pm }(t,x) + u_h^{\pm }(t,x).\end{aligned}$$

Then the main task is to prove the following proposition:

Proposition A.1

(Proposition 6.2 in [49]) Let \(\max (0,2-2s)< \delta < 1\). Let \(u_{N}^{\pm }\) be the unique solution to (2.1) with initial data

$$\begin{aligned}u_{N}^{\pm }(0,x) = \pm \epsilon N^{-3}\widetilde{\phi }_{N}(x) + N^{-\frac{4+\delta }{2}-s}\phi _{N}(x) \cos \left( N x \right) .\end{aligned}$$

Then, we have

$$\begin{aligned} \left\Vert u_{N}^{\pm } - u_{ap}^{\pm }\right\Vert _{H^s} = o(1), \end{aligned}$$
(A.2)

for \(s > 0\) and \(|t| <1\), as \(N \rightarrow \infty \).

Once (A.2) holds true, one conclude that

$$\begin{aligned}\begin{aligned} \left\Vert u_{N}^+ - u_{N}^-\right\Vert _{H^s} =&~{} N^{-\frac{4+\delta }{2}-s}\\&\quad \left\Vert \phi _{N}(x)\left( \cos \left( N x -\Phi _N(t) + t\right) -\cos \left( N x -\Phi _N(t) - t\right) \right) \right\Vert _{H^s} + o(1)\\ =&~{} 2N^{-\frac{4+\delta }{2}-s}\left\Vert \phi _{N}(x)\sin \left( N x -\Phi _N(t)\right) \right\Vert _{H^s}|\sin t| + o(1), \end{aligned}\end{aligned}$$

which, in addition to Lemma A.2 below, implies

$$\begin{aligned}\lim _{N \rightarrow \infty }\left\Vert u_{N}^+ - u_{N}^-\right\Vert _{H^s} \ge c|\sin t| \sim c|t|,\end{aligned}$$

for \(|t| < 1\). This completes the proof of Theorem 1.4.

We recall from [45, 49] the following useful lemmas to prove Proposition A.1.

Lemma A.2

(Lemma 2.3 in [45]) Let \(s \ge 0\), \(\delta > 0\) and \(\gamma \in {\mathbb {R}}\). Then,

$$\begin{aligned}\lim _{N \rightarrow \infty } N^{-\frac{4+\delta }{2}-s}\left\Vert \phi _{N}(x)\sin \left( N x + \gamma \right) \right\Vert _{H^s} = c_0 \left\Vert \phi \right\Vert _{L^2},\end{aligned}$$

for some \(c_0 >0\).

Lemma A.3

(Lemma 6.3 in [49]) Let K be a positive integer and \(K-2-s \ge k \ge 0\). Then, we have

$$\begin{aligned} \left\Vert \partial _x^ku_l^{\pm }(t,\cdot )\right\Vert _{L^2} \lesssim _K N^{-\frac{2-\delta }{2}-k(4+\delta )} \end{aligned}$$
(A.3)
$$\begin{aligned} \left\Vert \partial _x^ku_l^{\pm }(t,\cdot )\right\Vert _{L^{\infty }} \lesssim _K N^{-3-k(4+\delta )} \end{aligned}$$
(A.4)
$$\begin{aligned} \left\Vert u_l^{\pm }(t,\cdot )-u_{0,l}^{\pm }(\cdot )\right\Vert _{L^2} \lesssim _K N^{-15-3\delta } \end{aligned}$$
(A.5)

Proof

The proof of (A.3) and (A.4) follows from a direct computation and Theorem 1.2, in particular, a priori bound (2.38). Moreover, the proof of (A.5) follows from a direct calculation in (2.1) and (A.3)–(A.4). The proof is almost identical to the proof of Lemma 6.3 in [49], thus we omit the details. \(\square \)

Lemma A.4

Let

$$\begin{aligned} {\mathcal {P}}^{\pm }(t,x):=u_{ap, t}^{\pm }+u_{ap, 5x}^{\pm }+10\mu ^2\lambda ^2u_{ap, 3x}^{\pm } +{\mathcal {N}}_2(u_{ap}^{\pm }) + {\mathcal {N}}_3(u_{ap}^{\pm }) + {{\mathcal {S}}}{{\mathcal {N}}}(u_{ap}^{\pm }), \end{aligned}$$
(A.6)

where \({\mathcal {N}}_2(\cdot )\), \({\mathcal {N}}_3(\cdot )\) and \({{\mathcal {S}}}{{\mathcal {N}}}(\cdot )\) are defined as in (2.2)–(2.3), respectively. Let \(s > 0\), \(0<\delta <2\) and \(|t| \le 1\). Then, we have

$$\begin{aligned} \left\Vert {\mathcal {P}}^{\pm }(t,\cdot )\right\Vert _{L^2} \lesssim N^{-s-\delta } + N^{\frac{2-\delta }{2} - 2s} + N^{-1-\delta -3s} + N^{1-\frac{3(4+\delta )}{2}-4s} +N^{1-2(4+\delta )-5s}. \end{aligned}$$
(A.7)

Moreover, if \(\sigma > 0\), we have

$$\begin{aligned} \left\Vert {\mathcal {P}}^{\pm }(t,\cdot )\right\Vert _{H^{\sigma }}\lesssim & {} N^{-s-\delta +\sigma } + N^{\frac{2-\delta }{2} - 2s + \sigma } + N^{-1-\delta -3s + \sigma } \nonumber \\&+ N^{1-\frac{3(4+\delta )}{2}-4s + \sigma } +N^{1-2(4+\delta )-5s + \sigma }. \end{aligned}$$
(A.8)

Proof

It suffices to consider \({\mathcal {P}}^{+}\), since an identical argument holds true for \({\mathcal {P}}^{-}\). We drop the super-index \(+\). We decompose \({\mathcal {P}}\) into \({\mathcal {P}}_1+{\mathcal {P}}_2\), where \({\mathcal {P}}_2= {\mathcal {N}}_3(u_{ap}) -{\mathcal {N}}_3(u_l) + {{\mathcal {S}}}{{\mathcal {N}}}(u_{ap}) - {{\mathcal {S}}}{{\mathcal {N}}}(u_l)\) and \({\mathcal {P}}_1 = {\mathcal {P}} -{\mathcal {P}}_2\). Lemma 6.4 in [49] exactly shows (A.7) and (A.8) for \({\mathcal {P}}_1\)Footnote 13. Our setting of \(\phi \), \(\widetilde{\phi }\) and \(u_l\) is essential to deal with

$$\begin{aligned}\Lambda := \epsilon N^{-\frac{4+\delta }{2}-s}\phi _N(x)(\partial _t+\partial _x^5+10\mu ^2\lambda ^2\partial _x^3 + \epsilon ^{-1}u_l\partial _x^3)\cos \left( N x -\Phi _N(t) - t\right) \end{aligned}$$

contained in \({\mathcal {P}}_1\) (compared to \(F_4\) in the proof of Lemma 6.4 in [49]). Indeed, a direct calculation in addition to \(u_{0,l}(x) := \epsilon N^{-3}\widetilde{\phi }_{N}(x)\) and \(\phi \widetilde{\phi } = \phi \) gives

$$\begin{aligned}\begin{aligned} \Lambda =&~{} N^{-\frac{4+\delta }{2}-s}\phi _N(x)\left( u_lN^3 - \epsilon \right) \sin \left( N x -\Phi _N(t) - t\right) \\ =&~{} N^{-\frac{4+\delta }{2}-s}N^3\phi _N(x)\left( u_l - u_{0,l} \right) \sin \left( N x -\Phi _N(t) - t\right) , \end{aligned}\end{aligned}$$

which is handled by using (A.5). Thus, it suffices to show (A.7) and (A.8) for \({\mathcal {P}}_2\). Putting first \(u_{ap} = u_l + u_h\) into \(10u_{ap}^2u_{ap, 3x} - 10 u_l^2u_{l, x}\) in \({\mathcal {P}}_2\), one has

$$\begin{aligned} 10u_l^2u_{h, xxx} + 20u_lu_hu_{l, xxx} + 20u_lu_hu_{h, xxx} + 10u_h^2u_{l, xxx} + 10u_h^2u_{h, xxx}. \end{aligned}$$
(A.9)

Note that

$$\begin{aligned}\begin{aligned} u_{h,x} =&~{} N^{-\frac{4+\delta }{2}-s}\left( \partial _x\phi _{N}(x) \cos \left( N x -\Phi _N(t) - t\right) +\phi _{N}(x) \partial _x\cos \left( N x -\Phi _N(t) - t\right) \right) \\ =&~{}N^{-\frac{4+\delta }{2}-s}\left( N^{-(4+\delta )}\phi _{N,x}(x)\cos \left( N x -\Phi _N(t) - t\right) \right. \\&\quad \left. - N \phi _{N}(x)\sin \left( N x -\Phi _N(t) - t\right) \right) . \end{aligned}\end{aligned}$$

Thus, one can see that the worst term arises from the case when the derivative acts on \(\cos \left( N x -\Phi _N(t) - t\right) \). Using Lemmas A.2 and A.3 , one estimates

$$\begin{aligned} \left\Vert (A.9)\right\Vert _{L^2} \lesssim N^{-3-s} + N^{-\frac{4+\delta }{2}-2s} + N^{-1-\delta -3s}.\end{aligned}$$

An analogous argument yield

$$\begin{aligned} \left\Vert u_{ap, x}^3 - u_{l, x}^3\right\Vert _{L^2}\lesssim & {} N^{-5-2(4+\delta )-s} + N^{-1-\frac{3(4+\delta )}{2}-2s} + N^{-1-\delta -3s},\\ \left\Vert u_{ap}u_{ap, x}u_{ap, xx} - u_{l}u_{l, x}u_{l, xx}\right\Vert _{L^2}\lesssim & {} N^{-8-\delta -s} + N^{-\frac{4+\delta }{2}-2s} + N^{-1-\delta -3s},\\ \left\Vert u_{ap}^4u_{ap,x} - u_{l}^4u_{l,x}\right\Vert _{L^2}\lesssim & {} N^{-11-s} + N^{-8-\frac{4+\delta }{2}-2s} + N^{-5-(4+\delta )-3s} \\&+ N^{-2-\frac{3(4+\delta )}{2}-4s}+ N^{1-2(4+\delta )-5s},\\ \left\Vert u_{ap}u_{ap, x} - u_{l}u_{l, x}\right\Vert _{L^2}\lesssim & {} N^{-2-s} + N^{1-\frac{4+\delta }{2}-2s}\end{aligned}$$

and

$$\begin{aligned}\left\Vert u_{ap}^3u_{ap, x} - u_{l}^3u_{l, x}\right\Vert _{L^2} \lesssim N^{-8-s} + N^{-5-\frac{4+\delta }{2}-2s} +N^{-2-(4+\delta )-3s}+N^{1-\frac{3(4+\delta )}{2}-4s}.\end{aligned}$$

Collecting all, we completes the proof of (A.7). Moreover, the fractional Leibniz rule ensure at least \(\left\Vert {\mathcal {P}}\right\Vert _{{\dot{H}}^{\sigma }} \lesssim _{\sigma } N^{\sigma } \left\Vert {\mathcal {P}}\right\Vert _{L^2}\), which in addition to (A.7) implies (A.8), since \(u_{l, t}+u_{l, 5x}+10\mu ^2\lambda ^2u_{l, 3x} + 30\mu ^4 \lambda ^4 u_{l, x} +{\mathcal {N}}_2(u_l) + {\mathcal {N}}_3(u_l) + {{\mathcal {S}}}{{\mathcal {N}}}(u_l) = 0\) and the others contains at least one \(u_h\). We complete the proof. \(\square \)

1.2 A.2. Proof of Proposition A.1

Let \(w^{\pm } := u_N^{\pm } - u_{ap}^{\pm }\). We only show \(\left\Vert w^+\right\Vert _{H^s} = o(1)\) as \(N \rightarrow \infty \) and drop the super-index \(+\). For \(s \ge 2\), the local well-posedness theory is available. A direct calculation gives

$$\begin{aligned}\Gamma w + {\mathcal {N}}_2(u_N) - {\mathcal {N}}_2(u_{ap}) + {\mathcal {N}}_3(u_N) - {\mathcal {N}}_3(u_{ap}) + {{\mathcal {S}}}{{\mathcal {N}}}(u_N) - {{\mathcal {S}}}{{\mathcal {N}}}(u_{ap}) + {\mathcal {P}} =0,\end{aligned}$$

where \(\Gamma := \partial _t+\partial _x^5 +10\mu ^2\lambda ^2 \partial _x^3\) and \({\mathcal {P}}\) is as in (A.6). For \(2 \le \sigma \), the local well-posedness, in particular (2.38), ensures

$$\begin{aligned} \left\Vert u_N\right\Vert _{C_TH^\sigma } + \left\Vert u_N\right\Vert _{F^\sigma (T)} \lesssim \left\Vert u_N(0)\right\Vert _{H^{\sigma }} \lesssim N^{\sigma -s}. \end{aligned}$$
(A.10)

Moreover, a direct calculation and the local theory (for \(u_l\)) gives

$$\begin{aligned} \left\Vert u_{ap}\right\Vert _{C_TH^\sigma } + \left\Vert u_{ap}\right\Vert _{F^\sigma (T)} \lesssim N^{-\frac{2-\delta }{2}} + N^{\sigma -s}. \end{aligned}$$
(A.11)

Using Propositions 2.15, Propositions 2.72.82.9 and 2.13 , and (A.7) under (A.10) and (A.11), one concludes

$$\begin{aligned}\left\Vert w\right\Vert _{F^0(T)} \lesssim \left\Vert {\mathcal {P}}\right\Vert _{L_T^1L_x^2} = O(N^{-s -\beta }),\end{aligned}$$

for \(\beta = \min (\delta , -\frac{2-\delta }{2}+s) > 0\), which, in addition to Proposition 2.14, implies

$$\begin{aligned} \left\Vert w\right\Vert _{L_T^{\infty }L_x^2} = O(N^{-s -\beta }). \end{aligned}$$
(A.12)

Furthermore, an analogous argument (but using (A.8) instead of (A.7)) in addition to

$$\begin{aligned}\left\Vert u_{ap}\right\Vert _{F^2s(T)}\left\Vert w\right\Vert _{F^0(T)} = O(N^{s}N^{-s-\beta }) = O(N^{-\beta }),\end{aligned}$$

ensures \(\left\Vert w\right\Vert _{F^s(T)} = O(N^{-\beta })\), which concludes (A.2) as \(N \rightarrow \infty \) for \(s \ge 2\).

To fill the regularity range \(0< s < 2\), we use the conservation law and the interpolation theorem. \(H^2\) conservation law (2.39) and a direct calculation yield

$$\begin{aligned}\left\Vert u_N\right\Vert _{H^2} \lesssim N^{2-s} \quad \text{ and } \quad \left\Vert u_{ap}\right\Vert _{H^2} \lesssim N^{2-s},\end{aligned}$$

respectively, which concludes

$$\begin{aligned} \left\Vert w\right\Vert _{H^2} \lesssim N^{2-s}. \end{aligned}$$
(A.13)

The interpolation between (A.12) and (A.13) ensures

$$\begin{aligned}\left\Vert w\right\Vert _{H^s} \lesssim \left\Vert w\right\Vert _{L^2}^{1-\frac{s}{2}}\left\Vert w\right\Vert _{H^3}^{\frac{s}{2}} \lesssim N^{-\frac{\beta (2-s)}{2}},\end{aligned}$$

which proves (A.2) as \(N \rightarrow \infty \) for \(0< s < 2\).

Appendix B. Proof of Lemma 3.2.

We are going to prove the identity (3.2)

$$\begin{aligned} {{\tilde{B}}}_{\mu ,t} = (\alpha ^2 + \beta ^2)^2 B_\mu + 2\big (\alpha ^2 - \beta ^2 - 5\mu ^2\big )\big (B_{\mu ,xx} + 2B_\mu ^3 + 6\mu B_\mu ^2\big ). \end{aligned}$$

Firstly and for the sake of simplicity, we will use the following notation:

$$\begin{aligned}&A_1:= (\alpha ^2+\beta ^2)^2 ,\quad A_2:= 2(\alpha ^2 - \beta ^2 - 5\mu ^2),\\&\Delta =\alpha ^2+\beta ^2-4\mu ^2,\quad e^{z} = \cosh (z) + \sinh (z),\\&D:= f^2 + g^2,\quad \text {where}\quad f, g~~\text {and its derivatives are given by:} \end{aligned}$$
$$\begin{aligned} \begin{aligned}&f=\cosh (\beta y_2)-\frac{2\beta \mu }{\alpha \sqrt{\alpha ^2+\beta ^2}\sqrt{\Delta }}(\alpha \cos (\alpha y_1) -\beta \sin (\alpha y_1) ),\\&f_1:=f_x=\beta \sinh (\beta y_2)+\frac{2\beta \mu }{\sqrt{\alpha ^2+\beta ^2}\sqrt{\Delta }}(\beta \cos (\alpha y_1) +\alpha \sin (\alpha y_1)), \\&f_2:=f_t=\beta \gamma _5\sinh (\beta y_2)+\frac{2\beta \delta _5\mu }{\sqrt{\alpha ^2+\beta ^2}\sqrt{\Delta }}(\beta \cos (\alpha y_1) +\alpha \sin (\alpha y_1) ),\\&f_3:=f_{xx}=\beta ^2\cosh (\beta y_2)+\frac{2\alpha \beta \mu }{\sqrt{\alpha ^2+\beta ^2}\sqrt{\Delta }}(-\alpha \cos (\alpha y_1) +\beta \sin (\alpha y_1) ),\\&f_4:=f_{xxx}=\beta ^3\sinh (\beta y_2)-\frac{2\alpha ^2\beta \mu }{\sqrt{\alpha ^2+\beta ^2}\sqrt{\Delta }}(\beta \cos (\alpha y_1) +\alpha \sin (\alpha y_1) ) \end{aligned} \end{aligned}$$
(B.1)

and

$$\begin{aligned} \begin{aligned}&g=\frac{\beta \sqrt{\alpha ^2+\beta ^2}}{\alpha \sqrt{\Delta }}\sin (\alpha y_1) - \frac{2\beta \mu e^{\beta y_2}}{\Delta },\\&g_1:=g_x=\frac{\beta \sqrt{\alpha ^2+\beta ^2}}{\sqrt{\Delta }}\cos (\alpha y_1) - \frac{2\beta ^2\mu e^{\beta y_2}}{\Delta },\\&g_2:=g_t=\frac{\beta \delta _5\sqrt{\alpha ^2+\beta ^2}}{\sqrt{\Delta }}\cos (\alpha y_1) - \frac{2\beta ^2\gamma _5\mu e^{\beta y_2}}{\Delta },\\&g_3:=g_{xx}=-\frac{\alpha \beta \sqrt{\alpha ^2+\beta ^2}}{\sqrt{\Delta }}\sin (\alpha y_1) - \frac{2\beta ^3\mu e^{\beta y_2}}{\Delta },\\&g_4:=g_{xxx}=-\frac{\alpha ^2\beta \sqrt{\alpha ^2+\beta ^2}}{\sqrt{\Delta }}\cos (\alpha y_1) - \frac{2\beta ^4\mu e^{\beta y_2}}{\Delta }, \end{aligned} \end{aligned}$$
(B.2)

where velocities \((\gamma _5,\delta _5)\) are given in (1.7). From the explicit expression of the breather solution (1.7) but now written in terms of the above derivatives (B.1)–(B.2), we obtain that:

$$\begin{aligned} B_\mu = 2\frac{g_1f-f_1g}{D} \qquad \text {and}\qquad {{\tilde{B}}}_{\mu ,t} = 2\frac{g_2f-f_2g}{D}. \end{aligned}$$
(B.3)

Moreover we get

$$\begin{aligned} B_\mu ^2 = 4\left( \frac{g_1f-f_1g}{D}\right) ^2\qquad \text {and}\qquad B_\mu ^3 = 8\left( \frac{g_1f-f_1g}{D}\right) ^3. \end{aligned}$$
(B.4)

Now, we compute \(B_{\mu ,xx}\). First we get

$$\begin{aligned}B_{\mu ,x} = -\frac{2}{D^2}\left( f^3 g_3-f^2 (2 f_1 g_1+f_3 g)+f g \left( 2 f_1^2+g g_3-2 g_1^2\right) +g^2 (2 f_1 g_1-f_3 g)\right) ,\end{aligned}$$

and then

$$\begin{aligned} B_{\mu ,xx} = 2\frac{M_1}{D^3}, \end{aligned}$$
(B.5)

where

$$\begin{aligned} \begin{aligned} M_1:=&\Big (f^5 g_4-f^4 (3 f_1 g_3+3 f_3 g_1+f_4 g)\\&+2 f^3 \left( 3 f_1^2 g_1+3 f_1 f_3 g+g^2 g_4-3 g g_1 g_3-g_1^3\right) \\&-2 f^2 g \left( 3 f_1^3-9 f_1 g_1^2+f_4 g^2\right) \\&+f g^2 \left( -18 f_1^2 g_1+6 f_1 f_3 g+g^2 g_4-6 g g_1 g_3+6 g_1^3\right) \\&+g^3 \left( 2 f_1^3+f_1 \left( 3 g g_3-6 g_1^2\right) +g (3 f_3 g_1-f_4 g)\right) \Big ), \end{aligned} \end{aligned}$$
(B.6)

and therefore from (B.3), (B.4), (B.5) and (B.6), we get

$$\begin{aligned} A_1B_\mu + A_2(B_{\mu ,xx} + 2B_\mu ^3 + 6\mu B_\mu ^2) = \frac{M_2}{D^3}, \end{aligned}$$
(B.7)

where

$$\begin{aligned} M_2:=2\Big (A_1D^2(fg_1-f_1g) + A_2(8(fg_1-f_1g)^3 + 12\mu D(f_1g-fg_1)^2 + M_1)\Big ),\nonumber \\ \end{aligned}$$
(B.8)

Now, we verify that, after expanding \(f's\) and \(g's\) terms (B.1)–(B.2) and lengthy rearrangements, the above term (B.8) simplifies as follows:

$$\begin{aligned}M_2 = 2D^2(g_2f-gf_2).\end{aligned}$$

Finally, remembering (B.7), we have that

$$\begin{aligned}A_1B_\mu + A_2(B_{\mu ,xx} + 2B_\mu ^3 + 6\mu B_\mu ^2) = \frac{M_2}{D^3} = \frac{2D^2(g_2f-gf_2)}{D^3} = {\tilde{B}}_{\mu ,t},\end{aligned}$$

and we conclude.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alejo, M.A., Kwak, C. Global Solutions and Stability Properties of the 5th Order Gardner Equation. J Dyn Diff Equat 35, 575–621 (2023). https://doi.org/10.1007/s10884-021-10022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10022-4

Keywords

Mathematics Subject Classification

Navigation