Skip to main content
Log in

Existence of Multi-bump Solutions for the Magnetic Schrödinger–Poisson System in \(\pmb {{\mathbb {R}}}^{3}\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

This paper concerns the following magnetic Schrödinger–Poisson system

$$\begin{aligned} {\left\{ \begin{array}{ll} -(\nabla +i A(x))^{2}u+(\lambda V(x)+Z(x))u+\phi u=f(\left| u\right| ^{2})u ,&{} \text { in }{{\mathbb {R}}}^{3}, \\ -\varDelta \phi = u^{2}, &{} \text { in } {\mathbb {R}}^{3}, \end{array}\right. } \end{aligned}$$

where \(\lambda \) is a positive parameter, f has subcritical growth, the potentials V\(Z:{\mathbb {R}}^{3}\rightarrow {\mathbb {R}}\) are continuous functions verifying some conditions, the magnetic potential \(A \in L_\mathrm{loc}^{2}({\mathbb {R}}^{3}, {\mathbb {R}}^{3}) \). Assuming that the zero set of V(x) has several isolated connected components \(\varOmega _{1},\ldots ,\varOmega _{k}\) such that the interior of \(\varOmega _{j}\) is non-empty and \(\partial \varOmega _{j}\) is smooth, where \(j\in \left\{ 1,\ldots ,k\right\} \), then for \(\lambda >0\) large enough, we show that the above system has at least \(2^{k}-1\) multi-bump solutions by using variational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Figueiredo, G.M., Furtado, M.F.: Multiple solutions for a nonlinear Schrödinger equation with magnetic fields. Commun. Partial Differ. Equ. 36, 1565–1586 (2011)

    Article  Google Scholar 

  2. Alves, C.O., Yang, M.B.: Existence of positive multi-bump solutions for a Schrödinger–Poisson system in \({\mathbb{R}}^{3}\). Discrete Contin. Dyn. Syst. 36, 5881–5910 (2016)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A.: On Schrödinger–Poisson systems. Milan J. Math. 76, 257–274 (2008)

    Article  MathSciNet  Google Scholar 

  4. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

    Article  MathSciNet  Google Scholar 

  5. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

    Article  Google Scholar 

  6. Chabrowski, J., Szulkin, A.: On the Schrödinger equation involving a critical Sobolev exponent and magnetic field. Topol. Methods Nonlinear Anal. 25, 3–21 (2005)

    Article  MathSciNet  Google Scholar 

  7. Chen, S.T., Fiscella, A., Pucci, P., Tang, X.H.: Semiclassical ground state solutions for critical Schrödinger–Poisson systems with lower perturbations. J. Differ. Equ. 268, 2672–2716 (2020)

    Article  Google Scholar 

  8. Cingolani, S., Secchi, S.: Semiclassical limit for nonlinear Schrödinger equation with electromagnetic fields. J. Math. Anal. Appl. 275, 108–130 (2002)

    Article  MathSciNet  Google Scholar 

  9. Cingolani, S., Secchi, S., Squassina, M.: Semiclassical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb. A 140, 973–1009 (2010)

    Article  Google Scholar 

  10. D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein–Gordon–Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)

    Article  MathSciNet  Google Scholar 

  11. D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. R. Soc. Edinb. A 134, 893–906 (2004)

    Article  Google Scholar 

  12. d’Avenia, P., Ji, C.: Multiplicity and concentration results for a magnetic Schrödinger equation with exponential critical growth in \({\mathbb{R}}^{2}\). Int. Math. Res. Not. https://doi.org/10.1093/imrn/rnaa074

  13. del Pino, M., Felmer, P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  MathSciNet  Google Scholar 

  14. Ding, Y.H., Tanaka, K.: Multiplicity of positive solutions of a nonlinear Schrödinger equations. Manuscr. Math. 112, 109–135 (2003)

    Article  Google Scholar 

  15. Ding, Y.H., Wang, Z.Q.: Bound states of nonlinear Schrödinger equations with magnetic fields. Ann. Mat. Pura Appl. (4) 190, 427–451 (2011)

    Article  MathSciNet  Google Scholar 

  16. Esteban, M., Lions, P.L.: Stationary solutions of nonlinear Schrödinger equations with an external magnetic field. In: Partial Differential Equations and the Calculus of Variations. Progress in Nonlinear Differential Equations and Their Applications, vol. I, pp. 401-449. Birkhäuser, Boston (1989)

  17. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, New York (1983)

    MATH  Google Scholar 

  18. Han, P.: Solutions for singular critical growth Schrödinger equation with magnetic field. Port. Math. (N.S.) 63, 37–45 (2006)

    MathSciNet  MATH  Google Scholar 

  19. He, X.M.: Multiplicity and concentration of positive solutions for the Schrödinger–Poisson equations. Z. Angew. Math. Phys. 62, 869–889 (2011)

    Article  MathSciNet  Google Scholar 

  20. Ianni, I., Vaira, G.: On concentration of positive bound states for the Schrödinger–Poisson problem with potentials. Adv. Nonlinear Stud. 8, 573–595 (2008)

    Article  MathSciNet  Google Scholar 

  21. Ji, C., Rădulescu, V.D.: Multiplicity and concentration of solutions to the nonlinear magnetic Schrödinger equation. Calc. Var. Partial Differ. Equ. 59, art. 115 (2020)

  22. Ji, C., Rădulescu, V.D.: Concentration phenomena for nonlinear magnetic Schrödinger equations with critical growth. Isr. J. Math. 241, 465–500 (2021)

  23. Ji, C., Rădulescu, V.D.: Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in \({\mathbb{R}}^{2}\). Manuscr. Math. 164, 509–542 (2021)

    Article  Google Scholar 

  24. Kikuchi, H.: On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations. Nonlinear Anal. 67, 1445–1456 (2007)

    Article  MathSciNet  Google Scholar 

  25. Kurata, K.: Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Anal. 41, 763–778 (2000)

    Article  MathSciNet  Google Scholar 

  26. Li, L., Pucci, P., Tang, X.H.: Ground state solutions for the nonlinear Schrödinger–Bopp–Podolsky system with critical Sobolev exponent. Adv. Nonlinear Stud. 20, 511–538 (2020)

    Article  MathSciNet  Google Scholar 

  27. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  28. Liu, Y.L., Li, X., Ji, C.: Multiplicity of concentrating solutions for a class of magnetic Schrödinger–Poisson type equation. Adv. Nonlinear Anal. 10, 131–151 (2021)

    Article  MathSciNet  Google Scholar 

  29. Liu, J.J., Ji, C.: Concentration results for a magnetic Schrödinger–Poisson system with critical growth. Adv. Nonlinear Anal. 10, 775–798 (2021)

    Article  MathSciNet  Google Scholar 

  30. Mugnai, D.: The Schrödinger–Poisson system with positive potential. Commun. Partial Differ. Equ. 36, 1099–1117 (2011)

    Article  Google Scholar 

  31. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  Google Scholar 

  32. Ruiz, D., Vaira, G.: Cluster solutions for the Schrödinger–Poisson–Slater problem around a local minimum of the potential. Rev. Mat. Iberoam. 27, 253–271 (2011)

    Article  MathSciNet  Google Scholar 

  33. Siciliano, G.: Multiple positive solutions for a Schrödinger–Poisson–Slater system. J. Math. Anal. Appl. 365, 288–299 (2010)

    Article  MathSciNet  Google Scholar 

  34. Tang, Z.W.: Multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields and critical frequency. J. Differ. Equ. 245, 2723–2748 (2008)

    Article  Google Scholar 

  35. Wang, J., Tian, L.X., Xu, J.X., Zhang, F.B.: Existence and concentration of positive solutions for semilinear Schrödinger–Poisson systems in \({\mathbb{R}}^{3}\). Calc. Var. Partial Differ. Equ. 48, 243–273 (2013)

    Article  Google Scholar 

  36. Yang, M.B., Shen, Z.F., Ding, Y.H.: Multiple semiclassical solutions for the nonlinear Maxwell–Schrödinger system. Nonlinear Anal. 71, 730–739 (2009)

    Article  MathSciNet  Google Scholar 

  37. Zhao, L., Zhao, F.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)

    Article  MathSciNet  Google Scholar 

  38. Zhao, F., Zhao, L.: Positive solutions for Schrödinger–Poisson equations with a critical exponent. Nonlinear Anal. 70, 2150–2164 (2009)

    Article  MathSciNet  Google Scholar 

  39. Zhu, A.Q., Sun, X.M.: Multiple solutions for Schrödinger–Poisson type equation with magnetic field. J. Math. Phys. 56, 091504 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for many helpful comments which clarify the paper. C. Ji was partially supported by Natural Science Foundation of Shanghai (20ZR1413900, 18ZR1409100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Ji, C. Existence of Multi-bump Solutions for the Magnetic Schrödinger–Poisson System in \(\pmb {{\mathbb {R}}}^{3}\). J Geom Anal 31, 10886–10914 (2021). https://doi.org/10.1007/s12220-021-00668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00668-3

Keywords

Mathematics Subject Classification

Navigation