Skip to main content
Log in

Inference of the topology of geomagnetic field multipole interactions

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The geomagnetic field is generated by a dynamo process in the Earth’s core and is characterized by a predominant dipole component that has been steadily decreasing in the last few centuries. The physical drivers behind the fluctuations of the geomagnetic dipole field remain poorly understood. One of the possible explanations rely on the interaction between the dipole mode and other multipole terms of the geomagnetic field. To test this hypothesis, we used two millennial scale models based on spherical harmonic fitting of paleomagnetic data, which allowed to reconstruct the geomagnetic field of the past. By performing causality and information statistical analysis, we found significant interactions between the dipole and smaller scale harmonics (quadrupole and octupole) of the geomagnetic field. In particular, both data sets agree that the spherical harmonic \(Y_2^2\) acts as a source term, whereas the axial dipole term \(Y_1^0\) consists of the term with least information loss. The results suggest a possible control of core–mantle boundary inhomogeneities on the interaction between the components of the geomagnetic field. Our results also show a net information flux from larger to smaller scales, which is compatible with a direct turbulent cascade view of the geodynamo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.T. Merrill, M.W. McElhinny, P.L. McFadden, The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle (Academic, San Diego, 1996)

    Google Scholar 

  2. M. Kono, in: Treatise on Geophysics, vol. 5, ed. M. Kono. (Elsevier Science, 2007), pp. 1–32

  3. F. Terra-Nova, H. Amit, G. Choblet, Preferred locations of weak surface field in numerical dynamos with heterogeneous core mantle boundary heat flux: consequences for the South Atlantic Anomaly. Geophys. J. Int. 217(2), 1179–1199 (2019)

    ADS  Google Scholar 

  4. M. Lockwood, Solar influence on global and regional climates. Surv. Geophys. 33(3), 503–534 (2012)

    ADS  Google Scholar 

  5. W. Poletti, A.J. Biggin, R.I. Trindade, G.A. Hartmann, F. Terra-Nova, Continuous millennial decrease of the Earth’s magnetic axial dipole. Phys. Earth Planet. Inter. 274, 72–86 (2018)

    ADS  Google Scholar 

  6. R.I. Trindade, P. Jaqueto, F. Terra-Nova, D. Brandt, G.A. Hartmann, J.M. Feinberg, H. Cheng, Speleothem record of geomagnetic South Atlantic Anomaly recurrence. Proc. Natl. Acad. Sci. 115(52), 13198–13203 (2018)

  7. F.J. Pavon-Carrasco, A. De Santis, The South Atlantic Anomaly: the key for a possible geomagnetic reversal. Front. Earth Sci. 4, 40 (2016)

    ADS  Google Scholar 

  8. M. Brown, M. Korte, R. Holme, I. Wardinski, S. Gunnarson, Earth’s magnetic field is probably not reversing. Proc. Natl. Acad. Sci. 115(20), 5111–5116 (2018)

    ADS  Google Scholar 

  9. B. Buffett, W. Davis, A probabilistic assessment of the next geomagnetic reversal. Geophys. Res. Lett. 45(4), 1845–1850 (2018)

    ADS  Google Scholar 

  10. P.H. Roberts, G.A. Glatzmaier, Geodynamo theory and simulations Rev. Mod. Phys. 72, 1081–1124 (2000)

    ADS  Google Scholar 

  11. J. Aubert, H. Amit, G. Hulot, P. Olson, Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity. Nature 454(7205), 758–761 (2008)

    ADS  Google Scholar 

  12. P. Olson, U.R. Christensen, The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow. Geophys. J. Int. 151(3), 809–823 (2002)

    ADS  Google Scholar 

  13. B. Raphaldini, C.F.M. Raupp, Nonlinear MHD Rossby wave interactions and persistent geomagnetic field structures. Proc. R. Soc. A 47620200174 (2020)

  14. D. Gubbins, A.P. Willis, B. Sreenivasan, Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure. Phys. Earth Planet. Inter. 162(3–4), 256–260 (2007)

    ADS  Google Scholar 

  15. J. Mound, C. Davies, S. Rost, J. Aurnou, Regional stratification at the top of Earth’s core due to core-mantle boundary heat flux variations. Nat. Geosci. 12(7), 575–580 (2019)

    ADS  Google Scholar 

  16. P. Olson, M. Landeau, E. Reynolds, Dynamo tests for stratification below the core-mantle boundary. Phys. Earth Planet. Inter. 271, 1–18 (2017)

    ADS  Google Scholar 

  17. L.A. Baccalá, K. Sameshima, Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84, 463–474 (2001)

    MATH  Google Scholar 

  18. C. Constable, M. Korte, S. Panovska, Persistent high paleosecular variation activity in southern hemisphere for at least 10,000 years. Earth Planet. Sci. Lett. 453, 78–86 (2016)

    ADS  Google Scholar 

  19. M. Korte, M. Brown, S. Gunnarson, LSMOD.1—global paleomagnetic field model for 50–30 ka BP. https://doi.org/10.5880/GFZ.2.3.2018.008 (2018)

  20. H. Amit, P. Olson, A dynamo cascade interpretation of the geomagnetic dipole decrease. Geophys. J. Int 181(3), 1411–1427 (2010)

    ADS  Google Scholar 

  21. F. Lhuillier, A. Fournier, G. Hulot, J. Aubert, The geomagnetic secular-variation timescale in observations and numerical dynamo models. Geophys. Res. Lett. 38(9), 1–5 (2011)

  22. H. Amit, M. Coutelier, U.R. Christensen, On equatorially symmetric and antisymmetric geomagnetic secular variation timescales. Phys. Earth Planet. Inter. 276, 190–201 (2018)

    ADS  Google Scholar 

  23. C. Bouligand, N. Gillet, D. Jault, N. Schaeffer, A. Fournier, J. Aubert, Frequency spectrum of the geomagnetic field harmonic coefficients from dynamo simulations. Geophys. Suppl. Mon. Not. R. Astron. Soc. 207(2), 1142–1157 (2016)

    Google Scholar 

  24. U.R. Christensen, A. Tilgner, Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature 429(6988), 169–171 (2004)

    ADS  Google Scholar 

  25. P. Mininni, A. Alexakis, A. Pouquet, Shell-to-shell energy transfer in magnetohydrodynamics. II. Kinematic dynamo. Phys. Rev. E 72(4), 046302 (2005)

  26. A. Alexakis, P.D. Mininni, A. Pouquet, Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence. Phys. Rev. E 72(4), 046301 (2005)

  27. M.G. Kivelson, M.G. Kivelson, C.T. Russell (eds.) Introduction to Space Physics (Cambridge University Press, 1995)

  28. C.W.J. Granger, Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969)

    MATH  Google Scholar 

  29. D.Y. Takahashi, L.A. Baccalá, K. Sameshima, Information theoretic interpretation of frequency domain connectivity measures. Biol. Cybern. 103(6), 463–469 (2010)

    MathSciNet  MATH  Google Scholar 

  30. D.Y. Takahashi, L.A. Baccalá, K. Sameshima, Connectivity inference between neural structures via partial directed coherence. J. Appl. Stat. 10(1259–1273), 648–650 (2007)

    MathSciNet  Google Scholar 

  31. K. Dzirasa, A.J. Ramsey, D.Y. Takahashi, J. Stapleton, J.M. Potes, J.K. Williams, R.R. Gainetdinov, K. Sameshima, M.G. Caron, M.A.L. Nicolelis, Hyperdopaminergia and NMDA receptor hypofunction disrupt neural phase signaling. J. Neurosci. 29, 8215–8224 (2000)

    Google Scholar 

  32. A. Allali, A. Oueslati, A. Trabelsi, Detection of information flow in major international financial markets by interactivity network analysis. Asia Pac. Finan. Markets 18, 319–344 (2010)

  33. K. Henschel, B. Hellwig, F. Amtage, J. Vesper, M. Jachan, C.H. Lücking, B. Timmer, J. Schelter, Multivariate analysis of dynamical processes point processes and time series. Eur. Phys. J. 165(1), 25–34 (2010)

  34. M. Winterhalder, B. Schelter, J. Timmer, Detecting coupling directions in multivariate oscillatory systems. Int. J. Bifurc. Chaos 17(10), 3735–3739 (2007). https://doi.org/10.1142/S0218127407019664

    Article  MATH  Google Scholar 

  35. J.R. Sato, D.Y. Takahashi, S.M. Arcuri, K. Sameshima, P.A. Morettin, L.A. Baccalá, Frequency domain connectivity identification: an application of partial directed coherence in fMRI. Hum. Brain Mapp. 30, 452–461. https://doi.org/10.1002/hbm.20513 (2009)

  36. B. Raphaldini, A.S. Teruya, L. da Silva, P. Dias, L. Massaroppe, D.Y. Takahashi, Stratospheric ozone and quasi-biennial oscillation (QBO) interaction with the tropical troposphere on intraseasonal and interannual timescales: a normal-mode perspective. Earth Syst. Dyn. 12(1), 83–101 (2021)

    ADS  Google Scholar 

  37. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  38. T.M. Cover, Elements of information theory (Wiley, New York, 1999)

    Google Scholar 

  39. I.M. Gelfand, A.M. Yaglom, Calculation of the amount of information about a random function contained in another such function. Am. Math. Soc. Transl. 2(12), 191–198 (1959)

    MathSciNet  Google Scholar 

  40. C.G. Antonopoulos, E. Bianco-Martinez, M.S. Baptista, Production and transfer of energy and information in Hamiltonian systems. PloS One 9(2), e89585 (2014)

    ADS  Google Scholar 

  41. B. Raphaldini, D.Y. Takahashi, A.S.W. Teruya, C.F.M. Raupp, P.L. Silva-Dias, Information flow between MJO-related waves: a network approach on the wave space. Phys. J. Spec. Top. Eur. (2021). https://doi.org/10.1140/epjs/s11734-021-00170-5

    Article  Google Scholar 

  42. B. Raphaldini, E.S. Medeiros, D. Ciro, D.R. Franco, R.I. Trindade, Geomagnetic reversals at the edge of regularity. Phys. Rev. Res. 3(1), 013158 (2021)

    Google Scholar 

  43. S.L. Marple Jr., Digital Spectral Analysis (Prentice Hall, New Jersey, 1987)

    Google Scholar 

  44. A. Schlogl, A comparison of multivariate autoregressive estimators. Signal Process. 86, 2426–2429 (2006)

    MATH  Google Scholar 

  45. H. Lütkepohl, New Introduction to Multiple Time Series Analysis (Springer, Berlin, 2005)

    MATH  Google Scholar 

  46. L. Huguet, H. Amit, Magnetic energy transfer at the top of Earth’s core. Geophys. J. Int. 190, 856–870 (2012)

    ADS  Google Scholar 

  47. G. Masters, G. Laske, H. Bolton, A. Dziewonski, The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. Earth’s Deep Inter. Miner. Phys. Tomogr. At. Glob. Scale 117, 63–87 (2000)

    Google Scholar 

  48. U.R. Christensen, Geodynamo models with a stable layer and heterogeneous heat flow at the top of the core. Geophys. J. Int. 215(2), 1338–1351 (2018)

    ADS  Google Scholar 

  49. C. Laj, A. Mazaud, R. Weeks, M. Fuller, E. Herrero Bervera, Statistical assessment of the preferred longitudinal bands for recent geomagnetic reversal records. Geophys. Res. Lett. 19(20), 2003–2006 (1992)

    ADS  Google Scholar 

  50. M. Korte, R. Holme, On the persistence of geomagnetic flux lobes in global Holocene field models. Phys. Earth Planet. Inter. 182(3–4), 179–186 (2010)

    ADS  Google Scholar 

  51. U. Frisch, Turbulence: the Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

  52. D. Biskamp, Magnetohydrodynamic turbulence (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  53. A. Pouquet, U. Frisch, J. Lèorat, Strong MHD helical turbulence and the non-linear dynamo effect. J. Fluid Mech. 77, 321–354 (1976)

    ADS  MATH  Google Scholar 

  54. P. Olson, U.R. Christensen, G.A. Glatzmaier, Numerical modeling of the geodynamo: mechanisms of field generation and equilibration. J. Geophys. Res. 104, 10383–10404 (1999)

    ADS  Google Scholar 

  55. F. Plunian, R. Stepanov, Cascades and dissipation ratio in rotating MHD turbulence at low magnetic Prandtl number. Phys. Rev E. 82, 046311 (2010)

  56. M. Reshetnyak, P. Hejda, Direct and inverse cascades in the geodynamo. Nonlinear Processes Geophys. 15, 873–880 (2008)

    ADS  Google Scholar 

  57. J.-P. Valet, L. Meynadier, Geomagnetic field intensity and reversals during the past four million years. Nature 366, 234–238 (1993)

    ADS  Google Scholar 

  58. D.A. Ryan, G.R. Sarson, Are geomagnetic field reversals controlled by turbulence within the Earth’s core? Geophys. Res. Lett. 34, L02307 (2007)

  59. P.W. Livermore, A. Fournier, Y. Gallet, Core-flow constraints on extreme archeomagnetic intensity changes. Earth Planet. Sci. Lett. 387, 145–156 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Ricardo Ivan Ferreira Trindade and Felipe Terra-Nova for their suggestions, as well as Dr. Koichi Sameshima and Luiz Baccala for providing their program to evaluate PDC. We thank Hagay Amit and one anonymous reviewer for the careful revision of the manuscript. This work was financially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) through grants 2015/50122-0, 2015/50686-1 and 2017/23417-5, and by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Raphaldini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raphaldini, B., Teruya, A.S.W., Raupp, C.F.M. et al. Inference of the topology of geomagnetic field multipole interactions. Eur. Phys. J. Spec. Top. 230, 2999–3007 (2021). https://doi.org/10.1140/epjs/s11734-021-00201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00201-1

Navigation