Skip to main content

Advertisement

Log in

An effective mobile-healthcare emerging emergency medical system using conformable chaotic maps

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The developments in telecommunication and online facility resolutions help to connect the digital divide among urban and rural healthcare services administrations, empowering arrangement of appropriate medicinal finding and treatment discussions. Mobile-healthcare (m-Healthcare) systems can be used for quality improvement of healthcare and monitoring individuals with chronic diseases like heart disease and diabetes under medical affair. Wireless body area networks are installed in the human body, which transmit the information via Bluetooth or other means to the smartphone. In this study, we introduce a new efficient mobile-healthcare emerging emergency medical system using conformable chaotic maps under cloud computing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abd El-Latif AA, Abd-El-Atty B, Abou-Nassar EM, Venegas-Andraca SE (2020a) Controlled alternate quantum walks based privacy preserving healthcare images in internet of things. Optics Laser Technol 124:105942

    Google Scholar 

  • Abd El-Latif AA, Abd-El-Atty B, Mazurczyk W, Fung C, Venegas-Andraca SE (2020b) Secure data encryption based on quantum walks for 5G Internet of Things scenario. IEEE Trans Netw Serv Manag 17(1):118–131

    Google Scholar 

  • Abd El-Latif AA, Abd-El-Atty B, Venegas-Andraca SE, Elwahsh H, Piran MJ, Bashir AK et al (2020c) Providing end-to-end security using quantum walks in IoT networks. IEEE Access

  • Abd-El-Atty B, Iliyasu AM, Alaskar H, El-Latif A, Ahmed A (2020) A robust quasi-quantum walks-based steganography protocol for secure transmission of images on cloud-based E-healthcare platforms. Sensors 20(11):3108

    Google Scholar 

  • Abou-Nassar EM, Iliyasu AM, El-Kafrawy PM, Song OY, Bashir AK, Abd El-Latif AA (2020) DITrust chain: towards blockchain-based trust models for sustainable healthcare IoT systems. IEEE Access 8:111223–111238

    Google Scholar 

  • Alghamdi A, Hammad M, Ugail H (2020) Detection of myocardial infarction based on novel deep transfer learning methods for urban healthcare in smart cities. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-08769-x

    Article  Google Scholar 

  • Amirbekyan A, Estivill-Castro V (2007) A new efficient privacy-preserving scalar product protocol. In: Proceedings of AusDM’07, pp 209–214

  • Anderson DR, Camrud E, Ulness DJ (2018) On the nature of the conformable derivative and its applications to physics. arXiv preprint arXiv:1810.02005

  • Bergamo P, D’Arco P, Santis A, Kocarev L (2005) Security of public key cryptosystems based on Chebyshev polynomials. IEEE Trans Circuits Syst I 52(7):1382–1393

    MathSciNet  MATH  Google Scholar 

  • Boneh D, Franklin MK (2001) Identity-based encryption from the weil pairing. In: Proceedings of CRYPTO’01, pp 213–229

  • Burrows M, Abadi M, Needham RM (1989) A logic of authentication. Proc R Soc Lond A 426(1871):233–271

    MathSciNet  MATH  Google Scholar 

  • Cao X, Kou W (2010) A pairing-free identity-based authenticated key agreement scheme with minimal message exchanges. Inf Sci 180:2895–2903

    MATH  Google Scholar 

  • Chen F, Liao X, Wong KW, Han Q, Li Y (2012) Period distribution analysis of some linear maps. Commun Nonlinear Sci Numer Simul 17:3848–3856

    MathSciNet  MATH  Google Scholar 

  • Conti M, Kumar M (2010) Opportunities in opportunistic computing. IEEE Comput 43(1):42–50

    Google Scholar 

  • Conti M, Giordano S, May M, Passarella A (2010) From opportunistic networks to opportunistic computing. IEEE Commun Mag 48(9):126–139

    Google Scholar 

  • Dhurandher SK, Kumar A, Obaidat MS (2018) Cryptography-based misbehavior detection and trust control mechanism for opportunistic network systems. IEEE Syst J 12(4):3191–3202

    Google Scholar 

  • Du W, Atallah M (2001) Privacy-preserving cooperative statistical analysis. In: Proceedings of ACSAC’01, pp 102–111

  • El-Latif AAA, Hossain MS, Wang N (2019) Score level multibiometrics fusion approach for healthcare. Clust Comput 22:2425–2436. https://doi.org/10.1007/s10586-017-1287-4

    Article  Google Scholar 

  • Elliot M, Purdam K, Smith D (2008) Statistical disclosure control architectures for patient records in biomedical information systems. J Biomed Inform 41:58–64

    Google Scholar 

  • Employee Benefit Research Institute, Retirement Confidence Survey [Online]. Available: http://www.ebri.org/surveys/hcs/ (2008)

  • Guelzim T, Obaidat MS, Sadoun B (2016) Introduction and overview of key enabling technologies for smart cities and homes. In: Smart cities and homes: key enabling technologies, pp 1–16

  • Han S, Chang E (2009) Chaotic map based key agreement with/out clock synchronization. Choas Soliton Fractals 39(3):1283–1289

    MathSciNet  MATH  Google Scholar 

  • Ibrahim MH, Kumari S, Das AK, Wazid M, Odelu V (2016) Secure anonymous mutual authentication for star two-tier wireless body area networks. Comput Methods Programs Biomed 135:37–50

    Google Scholar 

  • Klasnja P, Pratt W (2012) Healthcare in the pocket: mapping the space of mobile-phone health interventions. J Biomed Inform 45:184–198

    Google Scholar 

  • Lee CC, Hsu CW, Lai YM, Vasilakos A (2013) An enhanced mobile-healthcare emergency system based on extended chaotic maps. J Med Syst 37:9973

    Google Scholar 

  • Li M, Lou W, Ren K (2010) Data security and privacy in wireless body area networks. IEEE Wirel Commun 17(1):51–58

    Google Scholar 

  • Li M, Yu S, Zheng Y, Ren K, Lou W (2013) Scalable and secure sharing of personal health records in cloud computing using attribute-based encryption. IEEE Trans Parallel Distrib Syst 24(1):131–143

    Google Scholar 

  • Lin X, Sun X, Ho P, Shen X (2007) Gsis: a secure and privacy preserving protocol for vehicular communications. IEEE Trans Veh Technol 56(6):3442–3456

    Google Scholar 

  • Lin X, Lu R, Shen X, Nemoto Y, Kato N (2009) Sage: a strong privacy-preserving scheme against global eavesdropping for ehealth systems. IEEE J Sel Areas Commun 27(4):365–378

    Google Scholar 

  • Liu JW, Zhang ZH, Chen XF, Kwak KS (2014) Certificateless remote anonymous authentication schemes for wireless body area networks. IEEE Trans Parallel Distrib Syst 25(2):332–342

    Google Scholar 

  • Lu H, Lane ND, Eisenman SB, Campbell AT (2010a) Bubble-sensing: binding sensing tasks to the physical world. Ubiquitous Mob Comput 6(1):58–71

    Google Scholar 

  • Lu R, Lin X, Zhu H, Shen X (2010b) An intelligent secure and privacy-preserving parking scheme through vehicular communications. IEEE Trans Veh Technol 59(6):2772–2785

    Google Scholar 

  • Lu R, Lin X, Liang X, Shen X (2011) A secure handshake scheme with symptoms-matching for m-healthcare social network. Mob Netw Appl 16(6):683–694

    Google Scholar 

  • Lu R, Lin X, Luan H, Liang X, Shen X (2012) Pseudonym changing at social spots: an effective strategy for location privacy in VANETs. IEEE Trans Veh Technol 61(1):86–96

    Google Scholar 

  • Lu R, Lin X, Shen X (2013) SPOC: a secure and privacy-preserving opportunistic computing framework for mobile-healthcare emergency. IEEE Trans Parallel Distrib Syst 24(3):614–624

    Google Scholar 

  • Malin B, Sweeney L (2004) How (not) to protect genomic data privacy in a distributed network: using trail re-identification to evaluate and design anonymity protection systems. J Biomed Inform 37:179–192

    Google Scholar 

  • Masdari M, Ahmadzadeh S (2017) A survey and taxonomy of the authentication schemes in telecare medicine information systems. J Netw Comput Appl 87:1–19

    Google Scholar 

  • Mason JC, Handscomb DC (2003) Chebyshev polynomials. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Meshram C, Meshram SA, Zhang M (2012) An ID-based cryptographic mechanisms based on GDLP and IFP. Inf Process Lett 112(19):753–758

    MathSciNet  MATH  Google Scholar 

  • Meshram C, Lee CC, Li CT, Chen CL (2017a) A secure key authentication scheme for cryptosystems based on GDLP and IFP. Soft Comput 21(24):7285–7291

    Google Scholar 

  • Meshram C, Tseng YM, Lee CC, Meshram SG (2017b) An IND-ID-CPA secure ID-based cryptographic protocol using GDLP and IFP. Informatica 28(3):471–484

    MathSciNet  MATH  Google Scholar 

  • Meshram C, Li CT, Meshram SG (2019a) An efficient online/offline id-based short signature procedure using extended chaotic maps. Soft Comput 23(3):747–753

    MATH  Google Scholar 

  • Meshram C, Lee CC, Meshram SG, Li CT (2019b) An efficient ID-based cryptographic transformation model for extended chaotic-map-based cryptosystem. Soft Comput 23(16):6937–6946

    MATH  Google Scholar 

  • Meshram C, Lee CC, Meshram SG, Ramteke RJ, Meshram A (2020) An efficient mobile-healthcare emergency framework. J Med Syst 44(58):1–14

    Google Scholar 

  • [Online]. Available: http://www.research2guidance.com/us-1.3-billion-the-market-for-mhealth-applications-in-2012/

  • Rault T, Bouabdallah A, Challal Y, Marin F (2017) A survey of energy-efficient context recognition systems using wearable sensors for healthcare applications. Ubiquitous Mob Comput 37:23–44

    Google Scholar 

  • Ren Y, Pazzi RWN, Boukerche A (2010) Monitoring patients via a secure and mobile healthcare system. IEEE Wirel Commun 17(1):59–65

    Google Scholar 

  • Roy A, Mondal A, Misra S, Obaidat MS (2020) ORCID: opportunistic reconnectivity for network management in the presence of dumb nodes in wireless sensor networks. IEEE Syst J 14(1):9–16

    Google Scholar 

  • Silva Bruno MC, Rodrigues Joel JPC, de la Torre DI, López-Coronado M, Saleem K (2015) Mobile-health: a review of current state in 2015. J Biomed Inform 56:265–272

    Google Scholar 

  • Sun J, Fang Y (2010) Cross-domain data sharing in distributed electronic health record systems. IEEE Trans Parallel Distrib Syst 21(6):754–764

    Google Scholar 

  • The AVISPA Project, funded by the European Union in the Future and Emerging Technologies (FET Open) programme, Project Number: IST-2001–39252, 2003. http://www.avispa-project.org/

  • Toninelli A, Montanari R, Corradi A (2009) Enabling secure service discovery in mobile healthcare enterprise networks. IEEE Wirel Commun 16(3):24–32

    Google Scholar 

  • Tsafack N, Kengne J, Abd-El-Atty B, Iliyasu AM, Hirota K, Abd El-Latif AA (2020) Design and implementation of a simple dynamical 4-D chaotic circuit with applications in image encryption. Inf Sci 515:191–217

    MATH  Google Scholar 

  • Tsafack N, Sankar S, Abd-El-Atty B, Kengne J, Jithin KC, Belazi A, Abd El-Latif AA (2020a) A new chaotic map with dynamic analysis and encryption application in internet of health things. IEEE Access 8:137731–137744

    Google Scholar 

  • Vaidya J, Clifton C (2002) Privacy preserving association rule mining in vertically partitioned data. In: Proceedings of ACM KDD'02, pp 639–644

  • Verma GK, Singh BB, Kumar N, Obaidat MS, He D, Singh H (2020) An Efficient and provable certificate-based proxy signature scheme for IIoT environment. Inf Sci 518:142–156

    MathSciNet  Google Scholar 

  • Wessels J (2001) Application of BAN-Logic. CMG Public Sector B.V., 2001. http://www.win.tue.nl/ipa/archive/springdays2001/banwessels.pdf. Accessed 20 Dec 2012

  • Yuce MR, Ng SWP, Myo NL, Khan JY, Liu W (2007) Wireless body sensor network using medical implant band. J Med Syst 31(6):467–474

    Google Scholar 

  • Zhang L (2008) Cryptanalysis of the public key encryption based on multiple chaotic systems. Chaos Solitons Fractals 37(3):669–674

    MathSciNet  MATH  Google Scholar 

  • Zhao Z (2014) An efficient anonymous authentication scheme for wireless body area networks using elliptic curve cryptosystem. J Med Syst 38(2):1–7

    Google Scholar 

  • Zhou J, Cao Z, Dong X, Lin X, Vasilakos AV (2013) Securing m-healthcare social networks: challenges, countermeasures and future directions. IEEE Wirel Commun 20(4):12–21

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the learned reviewers and their critical comments. Their comments have guided the authors to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrashekhar Meshram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshram, C., Ibrahim, R.W., Obaidat, M.S. et al. An effective mobile-healthcare emerging emergency medical system using conformable chaotic maps. Soft Comput 25, 8905–8920 (2021). https://doi.org/10.1007/s00500-021-05781-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-05781-7

Keywords

Navigation