Skip to main content
Log in

Finite-dimensional modules of the universal Askey–Wilson algebra and DAHA of type \((C_1^\vee ,C_1)\)

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Assume that \({\mathbb {F}}\) is an algebraically closed field and let q denote a nonzero scalar in \({\mathbb {F}}\) that is not a root of unity. The universal Askey–Wilson algebra \(\triangle _q\) is a unital associative \({\mathbb {F}}\)-algebra defined by generators and relations. The generators are ABC and the relations state that each of

$$\begin{aligned} A+\frac{q BC-q^{-1} CB}{q^2-q^{-2}}, \qquad B+\frac{q CA-q^{-1} AC}{q^2-q^{-2}}, \qquad C+\frac{q AB-q^{-1} BA}{q^2-q^{-2}} \end{aligned}$$

is central in \(\triangle _q\). The universal DAHA (double affine Hecke algebra) \({\mathfrak {H}}_q\) of type \((C_1^\vee ,C_1)\) is a unital associative \({\mathbb {F}}\)-algebra generated by \(\{t_i^{\pm 1}\}_{i=0}^3\), and the relations state that

$$\begin{aligned}&t_it_i^{-1}=t_i^{-1} t_i=1 \quad \hbox {for all } i=0,1,2,3;\\&t_i+t_i^{-1} \hbox { is central} \quad \hbox {for all } i=0,1,2,3; \\&\qquad \qquad \qquad t_0t_1t_2t_3=q^{-1}. \end{aligned}$$

Each \({\mathfrak {H}}_q\)-module is a \(\triangle _q\)-module by pulling back via the injection \(\triangle _q\rightarrow {\mathfrak {H}}_q\) given by

$$\begin{aligned} A\mapsto & {} t_1 t_0+(t_1 t_0)^{-1}, \\ B\mapsto & {} t_3 t_0+(t_3 t_0)^{-1}, \\ C\mapsto & {} t_2 t_0+(t_2 t_0)^{-1}. \end{aligned}$$

We classify the lattices of \(\triangle _q\)-submodules of finite-dimensional irreducible \({\mathfrak {H}}_q\)-modules. As a corollary, for any finite-dimensional irreducible \({\mathfrak {H}}_q\)-module V, the \(\triangle _q\)-module V is completely reducible if and only if \(t_0\) is diagonalizable on V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cherednik, I.: Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald’s operators. Int. Math. Res. Not. 9, 171–180 (1992)

    Article  MathSciNet  Google Scholar 

  2. Cherednik, I.: Double affine Hecke algebras and Macdonald’s conjectures. Ann. Math. 141, 191–216 (1995)

    Article  MathSciNet  Google Scholar 

  3. Curtin, B.: Modular Leonard triples. Linear Algebra Appl. 424, 510–539 (2007)

    Article  MathSciNet  Google Scholar 

  4. Frappata, L., Gaboriaud, J., Ragoucy, E., Vinet, L.: The \(q\)-Higgs and Askey–Wilson algebras. Nucl. Phys. B 944, 114632 (2019)

    Article  MathSciNet  Google Scholar 

  5. Genest, V.X., Vinet, L., Zhedanov, A.: The non-symmetric Wilson polynomials are the Bannai-Ito polynomials. Proc. Am. Math. Soc. 144, 5217–5226 (2016)

    Article  MathSciNet  Google Scholar 

  6. Groenevelt, W.: Fourier transforms related to a root system of rank \(1\). Transform. Groups 12, 77–116 (2007)

    Article  MathSciNet  Google Scholar 

  7. Huang, H.-W.: Finite-dimensional irreducible modules of the universal DAHA of type \((C_1^\vee ,C_1)\). Linear Multilinear Algebra. https://doi.org/10.1080/03081087.2020.1817297

  8. Huang, H.-W.: The universal DAHA of type \((C_1^\vee ,C_1)\) and Leonard triples. Commun. Algebra. https://doi.org/10.1080/00927872.2020.1832105

  9. Huang, H.-W.: The classification of Leonard triples of QRacah type. Linear Algebra Appl. 436, 1442–1472 (2012)

    Article  MathSciNet  Google Scholar 

  10. Huang, H.-W.: Finite-dimensional irreducible modules of the universal Askey–Wilson algebra. Commun. Math. Phys. 340, 959–984 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Huang, H.-W.: An embedding of the universal Askey–Wilson algebra into \(U_q(\mathfrak{sl}_2)\otimes U_q(\mathfrak{sl}_2)\otimes U_q(\mathfrak{sl}_2)\). Nucl. Phys. B 922, 401–434 (2017)

    Article  ADS  Google Scholar 

  12. Huang, H.-W.: An algebra behind the Clebsch–Gordan coefficients of \(U_q(\mathfrak{sl}_2)\). J. Algebra 496, 61–90 (2018)

    Article  MathSciNet  Google Scholar 

  13. Huang, H.-W.: Finite-dimensional irreducible modules of the Bannai–Ito algebra at characteristic zero. Lett. Math. Phys. 110, 2519–2541 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. Huang, H.-W.: The Racah algebra as a subalgebra of the Bannai–Ito algebra. SIGMA 16, 075 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Huang, H.-W.: Finite-dimensional modules of the universal Racah algebra and the universal additive DAHA of type \((C_1^\vee , C_1)\). J. Pure Appl. Algebra 225, 106653 (2021)

    Article  MathSciNet  Google Scholar 

  16. Huang, H.-W., Bockting-Conrad, S.: Finite-dimensional irreducible modules of the Racah algebra at characteristic zero. SIGMA 16, 018 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Cherednik, I.: DAHA-Jones polynomials of torus knots. Sel. Math. New Ser. 22, 1013–1053 (2016)

    Article  MathSciNet  Google Scholar 

  18. Koornwinder, T.H.: The relationship between Zhedanov’s algebra \({\rm AW}(3)\) and the double affine Hecke algebra in the rank one case. SIGMA 3, 15 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Koornwinder, T.H.: Zhedanov’s algebra \({\rm AW}(3)\) and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra. SIGMA 4, 17 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Lee, J.-H.: Q-polynomial distance-regular graphs and a double affine Hecke algebra of rank one. Linear Algebra Appl. 439, 3184–3240 (2013)

    Article  MathSciNet  Google Scholar 

  21. Macdonald, I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Cambridge Tracts in Mathematics (157), Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  22. Nomura, K., Terwilliger, P.: The universal DAHA of type \((C_1^\vee, C_1)\) and Leonard pairs of \(q\)-Racah type. Linear Algebra Appl. 533, 14–83 (2017)

    Article  MathSciNet  Google Scholar 

  23. Noumi, M., Stokman, J.V.: Askey-Wilson polynomials: an affine Hecke algebraic approach. In: Van Assche, W., Alvarez-Nodarse, R., Marcellan, F. (eds.) Laredo Lectures on Orthogonal Polynomials and Special Functions, pp. 111–144. Nova Science Publishers, New York (2004)

    MATH  Google Scholar 

  24. Oblomkov, A., Stoica, E.: Finite dimensional representations of the double affine Hecke algebra of rank \(1\). J. Pure Appl. Algebra 213, 766–771 (2009)

    Article  MathSciNet  Google Scholar 

  25. Terwilliger, P.: Two linear transformations each tridiagonal with respect to an eigenbasis of the other. Linear Algebra Appl. 330, 149–203 (2001)

    Article  MathSciNet  Google Scholar 

  26. Terwilliger, P.: The universal Askey–Wilson algebra and the equitable presentation of \(U_q({sl }_2)\). SIGMA 7, 26 (2011)

  27. Terwilliger, P.: The universal Askey–Wilson algebra. SIGMA 7, 24 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Terwilliger, P.: The universal Askey–Wilson algebra and DAHA of type \((C_1^\vee ,C_1)\). SIGMA 9, 40 (2013)

  29. Terwilliger, P.: The \(q\)-Onsager algebra and the universal Askey–Wilson algebra. SIGMA 14, 18 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Terwilliger, P., Žitnik, A.: Distance-regular graphs of \(q\)-Racah type and the universal Askey–Wilson algebra. J. Combinat. Theory Ser. A 125, 98–112 (2014)

    Article  MathSciNet  Google Scholar 

  31. Tsujimoto, S., Vinet, L., Zhedanov, A.: Double affine Hecke algebra of rank 1 and orthogonal polynomials on the unit circle. Construct. Approxim. 50, 209–241 (2019)

    Article  MathSciNet  Google Scholar 

  32. Zhedanov, A.: “Hidden symmetry” of Askey–Wilson polynomials. Teoreticheskaya i Matematicheskaya Fizika 89, 190–204 (1991), (English transl.: Theoretical and Mathematical Physics, 89:1146–1157, 1991)

Download references

Acknowledgements

The research is supported by the Ministry of Science and Technology of Taiwan under the project MOST 106-2628-M-008-001-MY4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hau-Wen Huang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HW. Finite-dimensional modules of the universal Askey–Wilson algebra and DAHA of type \((C_1^\vee ,C_1)\). Lett Math Phys 111, 81 (2021). https://doi.org/10.1007/s11005-021-01422-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01422-0

Keywords

Mathematics Subject Classification

Navigation