Skip to main content
Log in

Computational fluid dynamic analysis of mass transfer and hydrodynamics in a planetary centrifugal bioreactor

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Planetary centrifugal bioreactors are promising candidates for cell culture platforms since there is no pollution caused by stirring blades. In this work, the fluid structure in a planetary centrifugal bioreactor was investigated using the computational fluid dynamics (CFD) method. The effects of operating conditions on the oxygen transfer rate (OTR), mixing efficiency and shear environment of the bioreactor were studied with the revolution speed (N) ranging from 60 to 160 rpm and the rotation-to-revolution speed ratio (i) from −2 to 1. The results show that the volumetric mass transfer coefficient (kLa), turbulence intensity, volumetric power consumption, and shear stress increase along with the increase of the revolution and rotation speeds. Furthermore, the rotation in the opposite direction to the revolution is beneficial to the performance of the bioreactor. The planetary centrifugal bioreactor has a higher kLa of 50–200/h and a lower average shear stress of 0.01–0.05 Pa in comparison with conventional stirred tank bioreactors, which makes it suitable for biological culture of oxygen-consuming cells and shear-sensitive cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

gas-liquid interface area [m2]

a:

specific mass transfer area [m2/m3]

d:

characteristic length [m]

DL :

diffusion coefficient of oxygen [m2/s]

e:

scalar measure of shear strain rate [s−1]

E :

strain rate tensor [s−1]

Eij :

element of the strain rate tensor [s−1]

Gb :

turbulence generation due to buoyancy [kg/m·s3]

Gk :

turbulence generation due to the mean velocity gradients [kg/m·s3]

H:

vessel height [mm]

I:

turbulence intensity [%]

i:

ratio of rotation to revolution speed

k:

turbulence kinetic energy [m2/s2]

kL :

mass transfer coefficient [m/h]

kLa:

volumetric mass transfer coefficient [1/h]

MR :

revolution torque [Pa·s]

Mr :

rotation torque [Pa·s]

N:

revolution speed [rpm]

Nre :

number of full revolutions

p:

mean pressure [Pa[

P/VL :

volumetric power consumption [kW/m3]

R:

revolution radius [mm]

Rε :

additional term due to interaction between turbulence dissipation and mean shear in ε-transport equation of RNG k-ε

Re:

Reynolds numbers

r:

vessel radius [mm]

Sk :

source term for k-transport equation

SM, i :

source term for momentum equation in i direction

Sε :

source term for ε-transport equation

Sφ :

source term

t:

time [s]

u:

mean fluid velocity [m/s]

uch :

characteristic velocity [m/s]

U :

mean velocity vector [m/s]

U G :

velocity vector of the gas phase [m/s]

Ui :

mean velocity in i direction [m/s]

VL :

filling volume [mL]

YM :

dilatation dissipation [kg/m·s3]

α :

inclination angle [°]

α k :

inverse effective Prandtl number for turbulence kinetic energy

α ε :

inverse effective Prandtl number for turbulence kinetic energy dissipation rate

β :

gyration angle [°]

β re :

phase angle relative to the X-axis [°]

γ :

volume fraction of the gas phase

Γ φ :

diffusivity

ε :

turbulence dissipation rate [m2/s3]

μ :

fluid viscosity [Pa·s]

μ t :

turbulent viscosity or eddy viscosity [Pa·s]

ρ :

density[kg/m3]

τ :

scalar measure of shear stress [Pa]

ϕ :

universal variable

Ω :

angular velocity of revolution [rad/s]

ω :

angular velocity of rotation [rad/s]

ω x :

angular velocity component along the X-axis

ω y :

angular velocity component along the Y-axis

ω z :

angular velocity component along the Z-axis

CFD:

Computational Fluid Dynamics

MRF:

multiple reference frame

OTR:

oxygen transfer rate

PISO:

pressure-implicit with splitting of operators

PRESTO!:

pressure staggering option

RANS:

Reynolds-averaged Navier-Stokes

SM:

sliding mesh

VOF:

volume of fluid

References

  1. M. M. Buffo, L. J. Corrêa, M. N. Esperança, A. J. G. Cruz, C. S. Farinas and A. C. Badino, Biochem. Eng. J., 114, 130 (2016).

    Article  CAS  Google Scholar 

  2. S. Smetana, M. Sandmann, S. Rohn, D. Pleissner and V. Heinz, Bioresour. Technol., 245, 162 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. R. Verma, L. Mehan, R. Kumar, A. Kumar and A. Srivastava, Biochem. Eng. J., 151, 107312 (2019).

    Article  CAS  Google Scholar 

  4. H. Hang, Y. Guo, J. Liu, L. Bai, J. Xia, M. Guo and M. Hui, Biotechnol. Bioproc. E., 16, 567 (2011).

    Article  Google Scholar 

  5. M. J. De Jesus, P. Girard, M. Bourgeois, G. Baumgartner, B. Jacko, H. Amstutz and F. M. Wurm, Biochem. Eng. J., 17, 217 (2004).

    Article  CAS  Google Scholar 

  6. S. O. Enfors, M. Jahic, A. Rozkov, B. Xu, M. Hecker, B. Jürgen, E. Krüger, T. Schweder, G. Hamer, D. O’Beirne, N. Noisommit-Rizzi, M. Reuss, L. Boone, C. Hewitt, C. McFarlane, A. Nienow, T. Kovacs, C. Trägårdh, L. Fuchs, J. Revstedt, P. C. Friberg, B. Hjertager, G. Blomsten, H. Skogman, S. Hjort, F. Hoeks, H. Y. Lin, P. Neubauer, R. van der Lans, K. Luyben, P. Vrabel and Å. Manelius, J. Biotechnol., 85, 175 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. T. Tanzeglock, M. Soos, G. Stephanopoulos and M. Morbidelli, Biotechnol. Bioeng., 104, 360 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. C. Zupke, A. J. Sinskey and G. Stephanopoulos, Appl. Microbiol. Biot., 44, 27 (1995).

    Article  CAS  Google Scholar 

  9. J. Zhong, Korean J. Chem. Eng., 27, 1035 (2010).

    Article  CAS  Google Scholar 

  10. T. T. Devi and B. Kumar, Korean J. Chem. Eng., 31, 1339 (2014).

    Article  CAS  Google Scholar 

  11. A. Pan, M. Xie, J. Xia, J. Chu and Y. Zhuang, Korean J. Chem. Eng., 35, 61 (2018).

    Article  CAS  Google Scholar 

  12. P. Riegler, T. Chrusciel, A. Mayer, K. Doll and D. Weuster-Botz, Biochem. Eng. J., 141, 89 (2019).

    Article  CAS  Google Scholar 

  13. J. Xia, Y. Wang, S. Zhang, N. Chen, P. Yin, Y. Zhuang and J. Chu, Biochem. Eng. J., 43, 252 (2009).

    Article  CAS  Google Scholar 

  14. Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji and C. Wang, Bioresour. Technol., 272, 360 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. A. C. Badino, M. C. R. Facciotti and W. Schmidell, Biochem. Eng. J., 8, 111 (2001).

    Article  CAS  Google Scholar 

  16. Z. J. Li, V. Shukla, K. Wenger, A. Fordyce, A. G. Pedersen and M. Marten, Biotechnol. Bioeng., 77, 601 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. F. Garcia-Ochoa and E. Gomez, Biotechnol. Adv., 27, 153 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. N. Chergui, M. Lateb, É. Lacroix and L. Dufresne, Chem. Eng. Res. Des., 102, 100 (2015).

    Article  CAS  Google Scholar 

  19. U. Massing, S. Cicko and V. Ziroli, J. Control. Release, 125, 16 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Y. Yamaga, M. Kanatani and S. Nomura, J. Prosthodontic Res., 59, 71 (2015).

    Article  Google Scholar 

  21. M. A. Raza, A. V. K. Westwood and C. Stirling, Mater. Chem. Phys., 132, 63 (2012).

    Article  CAS  Google Scholar 

  22. J. Bridgwater, Particuology, 10, 397 (2012).

    Article  Google Scholar 

  23. K. J. Son, Korea-Aust. Rheol. J., 30, 199 (2018).

    Article  Google Scholar 

  24. W. Weheliye, M. Yianneskis and A. Ducci, AIChE J., 59, 334 (2013).

    Article  CAS  Google Scholar 

  25. A. Ducci and W. H. Weheliye, AIChE J., 60, 3951 (2014).

    Article  CAS  Google Scholar 

  26. G. Rodriguez, M. Micheletti and A. Ducci, Chem. Eng. Res. Des., 132, 890 (2018).

    Article  CAS  Google Scholar 

  27. Z. Lu, K. Wang, G. Jin, K. Huang and J. Huang, J. Chem. Technol. Biotechnol., 93, 810 (2017).

    Article  Google Scholar 

  28. M. Discacciati, D. Hacker, A. Quarteroni, S. Quinodoz, S. Tissot and F. M. Wurm, Int. J. Numer. Meth. Fl., 71, 294 (2013).

    Article  Google Scholar 

  29. Y. Liu, Z. Wang, J. Zhang, J. Xia, J. Chu, S. Zhang and Y. Zhuang, Biochem. Eng. J., 113, 66 (2016).

    Article  CAS  Google Scholar 

  30. L. Zhu, B. Song, Z. Wang, D. T. Monteil, X. Shen, D. L. Hacker, M. De Jesus and F. M. Wurm, Biotechnol. Progr., 33, 192 (2017).

    Article  CAS  Google Scholar 

  31. M. Mansour, P. Khot, P. Kováts, D. Thévenin, K. Zähringer and G. Janiga, Chem. Eng. J., 383, 123121 (2020).

    Article  CAS  Google Scholar 

  32. E. Bumrungthaichaichan, Korean J. Chem. Eng., 33, 3050 (2016).

    Article  CAS  Google Scholar 

  33. Y. He, A. E. Bayly, A. Hassanpour, M. Fairweather and F. Muller, Chem. Eng. Sci., 212, 115333 (2020).

    Article  Google Scholar 

  34. A. Kazemzadeh, C. Elias, M. Tamer, A. Lohi and F. Ein-Mozaffari, Chem. Eng. Sci., 219, 115606 (2020).

    Article  CAS  Google Scholar 

  35. F. Auger, G. Delaplace, L. Bouvier, A. Redl, C. André and M. Morel, J. Food Eng., 118, 350 (2013).

    Article  Google Scholar 

  36. I. A. Escamilla-Ruíz, F. Z. Sierra-Espinosa, J. C. García, A. Valera-Medina and F. Carrillo, Heat Mass Transfer., 53, 2933 (2017).

    Article  Google Scholar 

  37. E. Bumrungthaichaichan and S. Wattananusorn, J. Chin. Inst. Eng., 42, 428 (2019).

    Article  CAS  Google Scholar 

  38. J. Büchs, U. Maier, S. Lotter and C. P. Peter, Biochem. Eng. J., 34, 200 (2007).

    Article  Google Scholar 

  39. P. Ducommun, P. Ruffieux, M. Furter, I. Marison and U. von Stockar, J. Biotechnol., 78, 139 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. C. Li, J. Xia, J. Chu, Y. Wang, Y. Zhuang and S. Zhang, Biochem. Eng. J., 70, 140 (2013).

    Article  CAS  Google Scholar 

  41. T. A. Barrett, A. Wu, H. Zhang, M. S. Levy and G. J. Lye, Biotechnol. Bioeng., 105, 260 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. P. Ruffieux, U. von Stockar and I. W. Marison, J. Biotechnol., 63, 85 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. S. C. Kaiser, M. Kraume and D. Eibl, Chem. Ing. Tech., 88, 77 (2016).

    Article  CAS  Google Scholar 

  44. M. Xie, J. Xia, Z. Zhou, G. Zhou, J. Chu, Y. Zhuang, S. Zhang and H. Noorman, Chem. Eng. Sci., 106, 144 (2014).

    Article  CAS  Google Scholar 

  45. J. Büchs, U. Maier, C. Milbradt and B. Zoels, Biotechnol. Bioeng., 68, 594 (2000).

    Article  PubMed  Google Scholar 

  46. M. A. Garcia-Briones and J. J. Chalmers, Biotechnol. Bioeng., 44, 1089 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. ANSYS, ANSYS Fluent Theory Guide, release 19.0 (2017).

  48. L. Zhu, B. Song and Z. Wang, J. Chem. Technol. Biotechnol., 94, 2212 (2019).

    CAS  Google Scholar 

  49. Y. Liu, Z. Wang, J. Xia, C. Haringa, Y. Liu, J. Chu, Y. Zhuang and S. Zhang, Biochem. Eng. J., 114, 209 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study is supported by the National Natural Science Foundation of China (Grant Nos. 51975226 and 51605179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, B., Zhan, X., He, Y. et al. Computational fluid dynamic analysis of mass transfer and hydrodynamics in a planetary centrifugal bioreactor. Korean J. Chem. Eng. 38, 1358–1369 (2021). https://doi.org/10.1007/s11814-021-0817-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0817-1

Keywords

Navigation