Skip to main content
Log in

Combination of inertial focusing and magnetoporetic separation in a novel microdevice

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Separation of microparticles is of great importance in diagnostic, chemical, and biological analysis, as well as food processing and environmental assessments. In the present work, a novel microfluidic device is designed to focus microparticles based on inertial and magnetophoretic impacts. Three permanent magnets are mounted in the vicinity of the microchannel to separate the diamagnetic particles suspended in a ferrofluid by applying a negative magnetophoretic force. Polystyrene particles with three sizes of 5, 10, and 15 µm are separated from each other using the proposed device with 100% separation efficiency. The results show that high purity of particle collection can be achieved using Halbach array of magnets at Reynolds numbers of 100 and 110. The influence of inlet flow velocity, magnets’ configuration, and their distance from the microchannel is investigated and the optimal situations are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Sajeesh and A. K. Sen, Microfluid Nanofluidics, 17, 1 (2014).

    Article  Google Scholar 

  2. M. Bayareh, Chem. Eng. Process., 153, 107984 (2020).

    Article  CAS  Google Scholar 

  3. Y.-Y. Chiu, C.-K. Huang and Y.-W. Lu, Biomicroflluidics, 10, 011906 (2016).

    Article  CAS  Google Scholar 

  4. T. S. Tran, B. D. Ho, J. P. Beech and J. O. Tegenfeldt, Lab on a Chip, 17, 3592 (2017).

    Article  PubMed  CAS  Google Scholar 

  5. M. Yamada, M. Nakashima and M. Seki, Anal. Chem., 76(18), 5465 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar and I. Papautsky, Lab on a Chip, 9, 2973 (2009).

    Article  PubMed  CAS  Google Scholar 

  7. I. Doh and Y.-H. Cho, Sens. Actuators A, 121, 59 (2005).

    Article  CAS  Google Scholar 

  8. D. Baresch, J.-L. Thomas and R. Marchiano, Phys. Rev. Lett., 116, 024301 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. A. Abdulla, W. Liu, A. Gholamipour-Shirazi, J. Sun and X. Ding, Anal. Chem., 90, 4397 (2018).

    Article  PubMed  CAS  Google Scholar 

  10. Y. Zhou, Z. Ma and Y. Ai, Microsyst. Nanoeng., 4, 1 (2018).

    Article  CAS  Google Scholar 

  11. D. Di Carlo, D. Irimia, R. G. Tompkins and M. Toner, Proc. Natl. Acad. Sci., 104, 18892 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. S. Dutz, M. E. Hayden, A. Schaap, B. Stoeber and U.O. Hafeli, J. Magn. Magn. Mater., 324, 3791 (2012).

    Article  CAS  Google Scholar 

  13. A. Russom, A. K. Gupta, S. Nagrath, D. Di Carlo, J. F. Edd and M. Toner, New J. Phys., 11, 075025 (2009).

    Article  PubMed Central  CAS  Google Scholar 

  14. J. M. Martel and M. Toner, Annu. Rev. Biomed. Eng., 16, 371 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. A. A. S. Bhagat, S. S. Kuntaegowdanahalli and I. Papautsky, Lab on a Chip, 8, 1906 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. A. Al-Halhouli, W. Al-Fagheri, B. Alhamarneh, L. Hecht and A. Dietzel, Micromachines, 9, 171 (2018).

    Article  PubMed Central  Google Scholar 

  17. J. Sun, M. Li, C. Liu, Y. Zhang, D. Liu, W. Liu, G. Hu and X. Jiang, Lab on a Chip, 12, 3952 (2012).

    Article  PubMed  CAS  Google Scholar 

  18. P. Yeh, Z. Dai, M. Bergeron, Z. Zhang, M. Lin and X. Cao, Sens. Actuators B Chem., 252, 606 (2017).

    Article  CAS  Google Scholar 

  19. A. S. Rzhevskiy, S. R. Bazaz, L. Ding, A. Kapitannikova, N. Sayyadi, D. Campbell, B. Walsh, D. Gillatt, M. Ebrahimi Warkiani and A. V. Zvyagin, Cancers, 12, 81 (2020).

    Article  CAS  Google Scholar 

  20. A. Munaz, M. J. Shiddiky and N.-T. Nguyen, Biomicroflluidics, 12, 031501 (2018).

    Article  Google Scholar 

  21. A. Munaz, M. J. Shiddiky and N.-T. Nguyen, Sens. Actuators B Chem., 275, 459 (2018).

    Article  CAS  Google Scholar 

  22. T. Zhu, R. Cheng, S. A. Lee, E. Rajaraman, M. A. Eiteman, T. D. Querec, E. R. Unger and L. Mao, Microflluidic Nanofluidics, 13, 645 (2012).

    Article  CAS  Google Scholar 

  23. J. Zhang, S. Yan, D. Yuan, Q. Zhao, S.H. Tan, N.-T Nguyen and W. Li, Lab on a Chip, 16, 3947 (2016).

    Article  PubMed  CAS  Google Scholar 

  24. W. Zhao, R. Cheng, S. H. Lim, J. R. Miller, W. Zhang, W. Tang, J. Xie and L. Mao, Lab Chip, 17, 2243 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. J. Wu, Y. Cui, S. Xuan and X. Gong, Microfluidic Nanofluidics, 22, 103 (2018).

    Article  Google Scholar 

  26. M. Xue, A. Xiang, Y. Guo, L. Wang, W. Wang, G. Ji and Z. Lu, RSC Adv., 9, 38496 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  27. S. Ookawara, D. Street and K. Ogawa, Chem. Eng. Sci., 61, 3714 (2006).

    Article  CAS  Google Scholar 

  28. X. Han, Y. Feng, Q. Cao and L. Li, Microfluidic Nanofluidics, 18, 1209 (2015).

    Article  CAS  Google Scholar 

  29. M. E. Warkiani, A. K. P. Tay, G. Guan and J. Han, Sci. Rep., 5, 11018 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. J. M. Martel and M. Toner, Phys. Fluids, 24, 032001 (2012).

    Article  CAS  Google Scholar 

  31. D. Y. Kim and J. M. Kim, Korean J. Chem. Eng., 36, 837 (2019).

    Article  CAS  Google Scholar 

  32. A. Thanormsridetchai, D. Ketpun, W. Srituravanich, P. Piyaviriyakul, A. Sailasuta, W. Jeamsaksiri, W. Sripumkhai and A. Pimpin, J. Mech. Sci. Technol., 31, 5397 (2017).

    Article  Google Scholar 

  33. A. Özbey, M. Karimzadehkhouei, S. Akgonul, D. Gozuacik and A. Kosar, Sci. Rep., 6, 38809 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. A. Shiriny and M. Bayareh, Meccanica, 55, 1903 (2020).

    Article  Google Scholar 

  35. J. Vanderlinde, Classical electromagnetic theory, Springer, Netherland (2006).

    Google Scholar 

  36. S.-E. K. Fateen and M. Magdy, Chem. Eng. Res. Des., 95, 69 (2015).

    Article  CAS  Google Scholar 

  37. R. Cheng, T. Zhu and L. Mao, Microfluidic Nanofluidics, 16, 1143 (2014).

    Article  CAS  Google Scholar 

  38. Y. Zhou, D. T. Kumar, A. Kale, J. DuBose, Y. Song, J. Wang, D. Li and X. Xuan, Biomicrofluidics, 9, 044102 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Q. Chen, D. Li, J. Lin, M. Wang and X. Xuan, Anal. Chem., 89, 6915 (2017).

    Article  PubMed  CAS  Google Scholar 

  40. A. Shiriny and M. Bayareh, Chem. Eng. Sci., 229, 116102 (2021).

    Article  CAS  Google Scholar 

  41. H. W. Hou, M. Ebrahimi Warkiani, B. L. Khoo, Z. R. Li, R. A. Soo, D. S.-W. Tan, W. T. Lim, J. Han, A. A. S. Bhagat and C. T. Lim, Sci. Rep., 3, 1259 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Y. He, L. Luo and S. Huang, Int. J. Mod. Phys. B, 33, 1950047 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Bayareh.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiriny, A., Bayareh, M. & Nadooshan, A.A. Combination of inertial focusing and magnetoporetic separation in a novel microdevice. Korean J. Chem. Eng. 38, 1686–1702 (2021). https://doi.org/10.1007/s11814-021-0795-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0795-3

Keywords

Navigation