Skip to main content
Log in

Correlative HHV prediction from proximate and ultimate analysis of char obtained from co-cracking of residual fuel oil with plastics

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

It is imperative to know the energy content of the char to ascertain its application, which is environmentally friendly and efficient. In this context, the higher heating values (HHV) of the char resulting from the co-cracking of residual fuel oil (RFO) with various other waste plastics have been determined experimentally. Experimental results of the proximate and ultimate analysis of the char obtained from the co-cracking process were used to estimate the higher heating values (HHV) using eight different correlation models. The char obtained from the co-cracking of RFO and polypropylene (PPI) was found to have higher heating values (HHV) of 31.02 MJ/kg, while the HHV of Bakelite (BL) showed 23.56 MJ/kg. The best among the proximate correlations considered in this study resulted in the coefficient (R2) of 0.971, the average bias of −0.68%, and absolute error of 1.70%. The most relevant among the ultimate correlation models resulted in the coefficient of determination (R2) of 0.980, whereas the average and absolute bias errors were found to be −1.29% and 0.25%, respectively. The proximate and ultimate analysis of the chars reveals a direct interaction between the reactive species during the co-cracking of RFO with various types of plastic waste used in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Ahmaruzzaman, Bioresour. Technol., 99(11), 5043 (2008).

    Article  CAS  Google Scholar 

  2. S. Biswas and D. K. Sharma, J. Anal. Appl. Pyrolysis, 101, 17 (2013).

    Article  CAS  Google Scholar 

  3. N. Phetyim and S. Pivsa-Art, Energies, 11(11), 1 (2018).

    Article  Google Scholar 

  4. J. G. Faillace, C. F. de Melo, S. P. L. de Souza and M. R. da Costa Marques, J. Anal. Appl. Pyrolysis, 126, 70 (2017).

    Article  CAS  Google Scholar 

  5. P. Kasar, D. K. Sharma and M. Ahmaruzzaman, J. Clean. Prod., 265, 121639 (2020).

    Article  CAS  Google Scholar 

  6. P. Kasar and M. Ahmaruzzaman, JSIR, 78, 426 (2019).

    CAS  Google Scholar 

  7. P. Kasar and M. Ahmaruzzaman, Pet. Sci. Technol., 36, 18 (2018).

    Article  Google Scholar 

  8. V. K. Gupta and S. Sharma, Ind. Eng. Chem. Res., 42, 6619 (2003).

    Article  CAS  Google Scholar 

  9. A. K. Jain, V. K. Gupta, A. Bhatnagar and S. Suhas, J. Hazard. Mater., 101, 31 (2003).

    Article  CAS  Google Scholar 

  10. V. K. Gupta and I. Ali, Colloid Interface Sci., 271, 321 (2004).

    Article  CAS  Google Scholar 

  11. S. A. Channiwala and P. P. Parikh, Fuel, 81(8) 1051 (2002).

    Article  CAS  Google Scholar 

  12. D. R. Nhuchhen and M. T. Afzal, Bioengineering, 4(1) (2017).

  13. C. Qian, Q. Li, Z. Zhang, X. Wang, J. Hu and W. Cao, Fuel, 265, 116925 (2020).

    Article  CAS  Google Scholar 

  14. T. Cordero, F. Marquez, J. Rodríguez-Mirasol, J. J. Rodriguez, Fuel, 80, 1567 (2001).

    Article  CAS  Google Scholar 

  15. S. Kucukbayrak, B. Durus, A. E. Mericboyu and E. Kadioglu, Fuel, 70, 979 (1991).

    Article  CAS  Google Scholar 

  16. P. Fernandez, R. M. Diaz and J. Xiberta, Fuel, 76, 951 (1997).

    Article  CAS  Google Scholar 

  17. A. Demirbas, Fuel, 76, 431 (1997).

    Article  CAS  Google Scholar 

  18. L. Jimenez and F. González, Fuel, 70, 947 (1991).

    Article  CAS  Google Scholar 

  19. K. Raveendran and A. Ganesh, Fuel, 75, 1715 (1996).

    Article  CAS  Google Scholar 

  20. D. W. van Krevelen and J. Schuyer, Coal science- aspect of coal constitution, Amsterdam: Elsevier Pub. Co (1957).

    Google Scholar 

  21. ASTM D 3172-73(84), Standards method of proximate analysis of coal and coke in gaseous fuels; coal and coke, 1989, p. 299.

  22. ASTM D 3175-89, Standards test method for volatile matter in the analysis sample of coal and coke, in gaseous fuels; coal and coke, 1989, p. 305.

  23. ASTM D 3173-87, Standards test method for moisture in the analysis sample of coal and coke, in gaseous fuels; coal and coke, 1989, p. 300.

  24. ASTM D 3174-89, Standards test method for ash in the analysis sample of coal and coke, in gaseous fuels; coal and coke, 1989, p. 302.

  25. D. R. Nhuchhen and P. Abdul Salam, Fuel, 99, 55 (2012).

    Article  CAS  Google Scholar 

  26. D. R. Nhuchhen, Fuel, 180, 348 (2016).

    Article  CAS  Google Scholar 

  27. J. Parikh, S. A. Channiwala and G. K. Ghosal, Fuel, 84, 487 (2005).

    Article  CAS  Google Scholar 

  28. W. A. Selvig and F. H. Gibson, Calorific value of coal, 1st Ed. New York, Wiley (1945).

    Google Scholar 

  29. W. Boie, Energietechnik, 3, 309 (1953).

    Google Scholar 

  30. K. Miura, M. Makino and P. Silveston, Fuel, 69, 580 (1990).

    Article  CAS  Google Scholar 

  31. H. Darmstadt, C. Roy, S. Kaliaguine and H. Corner, Rubber Chem. Technol., 70, 759 (1997).

    Article  CAS  Google Scholar 

  32. I. Boumanchar, Y. Chhiti, F. E. Mhamdi Alaoui, A. Sahibed-Dine, F. Bentiss, C. Jama and M. Bensitel, Waste Manag. Res., 37(6), 578 (2019).

    Article  Google Scholar 

  33. L. Ballice, Fuel, 81, 1233 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ahmaruzzaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasar, P., Ahmaruzzaman, M. Correlative HHV prediction from proximate and ultimate analysis of char obtained from co-cracking of residual fuel oil with plastics. Korean J. Chem. Eng. 38, 1370–1380 (2021). https://doi.org/10.1007/s11814-021-0790-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0790-8

Keywords

Navigation