Skip to main content
Log in

Mathematical extraction of mechanical characteristics from electrical signals from an electrically driven quartz tuning fork in vacuum, air, and liquid environments

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A quartz tuning fork is an electromechanical resonator with self-actuating and self-sensing capabilities and is widely used as a force sensor in atomic force microscopy and spectroscopy. While the electrical response of a tuning fork is affected by the two prongs’ mechanical motion and stray capacitive current, a purely mechanical motion signal of the tuning fork is required for a quantitative analysis. Here, we demonstrate the extraction of a mechanical motion signal from the electrical signal of an electrically driven quartz tuning fork in various environments, including vacuum, air, and liquid. We show that the extraction formalism is well implemented in vacuum and air, but it does not work in liquid due to the largely enhanced damping and ions present in liquids. Furthermore, using the mechanical signal extracted from the electrical signal, we determine the interaction force exerted on the tip of the tuning fork in ambient air. The present extraction method enables versatile use of electrically driven tuning forks for force, mass, and environmental sensing, in which true mechanical motion signals should be used for accurate and quantitative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Binning, C.F. Quate, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 56, 930 (1986)

    Article  ADS  Google Scholar 

  2. S.N. Magonov, D.H. Reneker, Ann. Rev. Mater. Sci. 27(1), 175–222 (1997)

    Article  ADS  Google Scholar 

  3. F.J. Giessibl, Rev. Mod. Phys. 75, 949 (2003)

    Article  ADS  Google Scholar 

  4. K. Karrai, R.D. Grober, Piezoelectric tip-sample distance control for near field optical microscopes. Appl. Phys. Lett. 66, 1842 (1995)

    Article  ADS  Google Scholar 

  5. Castellanos-Gomeza, A., Agraït, N. & Rubio-Bollingerab. G., Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy. Ultramicroscopy 111, 186-190 (2011).

  6. M. Lee, B. Kim, J. Kim, W. Jhe, Noncontact friction via capillary shear interaction at nanoscale. Nat. Commum. 6, 7359 (2015)

    Article  ADS  Google Scholar 

  7. S. An, J. Kim, K. Lee, B. Kim, Lee M. Jhe, W, , Mechanical properties of the nanoscale molecular cluster of water meniscus by high-precision frequency modulation atomic force spectroscopy. Appl. Phys. Lett. 101, 053114 (2012)

    Article  ADS  Google Scholar 

  8. J. Kim, D. Won, B. Sung, W. Jhe, Observation of universal solidification in the elongated water nanomeniscus. J. Phys. Chem. Lett. 5, 737–742 (2014)

    Article  Google Scholar 

  9. F.M. Orr, L.E. Scriven, Pendular rings between solids: meniscus properties and capillary force. J. Fluid Mech. 67, 723 (1975)

    Article  ADS  Google Scholar 

  10. F.J. Giessibl, Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy. Science 267, 68–71 (1995)

    Article  ADS  Google Scholar 

  11. K. Pürckhauera, K. Maier, A. Merkel, D. Kirpal, F.J. Giessibl, Combined atomic force microscope and scanning tunneling microscope with high optical access achieving atomic resolution in ambient conditions. Rev. Sci. Instrum. 91, 083701 (2020)

    Article  ADS  Google Scholar 

  12. L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by Atomic force microscopy. Science 325, 1110–1114 (2009)

    Article  ADS  Google Scholar 

  13. F. Fatayer, F. Albrecht, Y. Zhang, D. Urbonas, D. Peña, N. Moll, L. Gross, Molecular structure elucidation with charge-state control. Science 365, 142–145 (2019)

    ADS  Google Scholar 

  14. J. Kim, D. Won, B. Sung, S. An, W. Jhe, Effective stiffness of qPlus sensor and quartz tuning fork. Ultramicroscopy 141, 56–62 (2014)

    Article  Google Scholar 

  15. M. Lee, J. Jahng, K. Kim, W. Jhe, Quantitative atomic force measurement with a quartz tuning fork. Appl. Phys. Lett. 91, 023117 (2007)

    Article  ADS  Google Scholar 

  16. M. Lee, W. Jhe, General theory of amplitude-modulation atomic force microscopy. Phys. Rev. Lett. 97, 036104 (2006)

    Article  ADS  Google Scholar 

  17. A. Liebig, A. Peronio, D. Meuer, A.J. Weymouth, F.J. Giessibl, High-precision atomic force microscopy with atomically-characterized tips. New J. Phys. 22, 063040 (2020)

    Article  ADS  Google Scholar 

  18. J. Jahng, H. Kwon, E.S. Lee, Photo-induced force microscopy by using quartz tuning-fork sensor. Sensors 19(7), 1530 (2019)

    Article  ADS  Google Scholar 

  19. Z. Wang, J. Qian, Y. Li, Y. Zhang, G. Shan, Z. Dou, Z. Song, R. Lin, Time-frequency analysis of the tip motion in liquids using the wavelet transform in dynamic atomic force microscopy. Nanotechnology 29, 385702 (2018)

    Article  ADS  Google Scholar 

  20. Y. Zhang, Y. Li, Z. Song, R. Lin, Y. Chen, J. Qian, A high-Q AFM sensor using a balanced trolling quartz tuning fork in the liquid. Sensors 18(5), 1628 (2018)

    Article  ADS  Google Scholar 

  21. S. An, K. Lee, B. Kim, J. Kim, S. Kwon, Q. Kim, M. Lee, W. Jhe, Compensation of stray capacitance of the quartz tuning fork for a quantitative force spectroscopy. Curr. App. Phys. 13, 1899–1905 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Chungbuk National University (2019), the research grant funded by Korea Basic Science Institute (D110100), Research Base Construction Fund Support Program funded by Jeonbuk National University in 2020, and National Research Foundation of Korea (NRF) grants funded by the Korean government (Ministry of Science & Information and Communication Technology) (2017R1C1B5076655, NRF-2020R1F1A1073628), the Basic Science Research Program through the NRF funded by the Ministry of Education (2020R1I1A1A0107075511), and the Technology Innovation Program (or Industrial Strategic Technology Development Program-Materials Parts Technology Development Program) (20010963, Semiconductor Process High Efficiency CMP Slurry Refinement Filter Media and Development of high functional product technology) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to MyoungChoul Choi, Sangmin An or Manhee Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, D., Kim, D., Bae, Y. et al. Mathematical extraction of mechanical characteristics from electrical signals from an electrically driven quartz tuning fork in vacuum, air, and liquid environments. J. Korean Phys. Soc. 79, 485–491 (2021). https://doi.org/10.1007/s40042-021-00231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00231-x

Keywords

Navigation