Skip to main content
Log in

Enhanced performance of polymer solar cells using selective silver nanocrystal morphology

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Localized-surface plasmon resonance (LSPR) of nanoscale particles (NPs) has been widely used for the enhancement of light-harvesting capability and current density in solar cells. Here, the LSPR was modulated through selective plasmon nanocrystals (NCs) with tuning the morphology (size and interparticle-spacing) using thermal evaporation. The selective NCs were implemented between the hole-transport layer and front anode contact in polymer solar cells (PSCs) to dramatically improve the short-circuit-current density and power-conversion efficiency by + 31.04 and + 32.02%, respectively. The photovoltaic enhancements were reflected by the significant increase in external quantum efficiency (+ 38%) and a decrease in optical losses (− 26%). Such promising results, together with the simple, controllable, and scalable preparation method, can pave the way for highly efficient plasmonic PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Du et al., Plasmonic Ag@oxide nanoprisms for enhanced performance of organic solar cells. Small 11, 2454–2462 (2015). https://doi.org/10.1002/smll.201402757

    Article  Google Scholar 

  2. X. Gu et al., Roll-to-roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend. Adv. Energy Mater. 7, 1602742 (2017). https://doi.org/10.1002/aenm.201602742

    Article  Google Scholar 

  3. A. Polman et al., Photovoltaic materials: present efficiencies and future challenges. Science (2016). https://doi.org/10.1126/science.aad4424

    Article  Google Scholar 

  4. Q. Liu et al., 18% efficiency organic solar cells. Sci. Bull. 6, 272 (2020). https://doi.org/10.1016/j.scib.2020.01.001

    Article  Google Scholar 

  5. S.V. Dayneko, A.D. Hendsbee, G.C. Welch, Combining facile synthetic methods with greener processing for efficient polymer-perylene diimide based organic solar cells. Small Methods 2, 1800081 (2018). https://doi.org/10.1002/smtd.201800081

    Article  Google Scholar 

  6. B. Fan et al., Improved performance of ternary polymer solar cells based on a nonfullerene electron cascade acceptor. Adv. Energy Mater. 7, 1602127 (2017). https://doi.org/10.1002/aenm.201602127

    Article  Google Scholar 

  7. X. Jiang et al., Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor. Phys. Chem. Chem. Phys. 19, 8069–8075 (2017). https://doi.org/10.1039/c7cp00494j

    Article  Google Scholar 

  8. Z. Liu et al., Benzophenone-based small molecular cathode interlayers with various polar groups for efficient polymer solar cells. J. Mater. Chem. A. 5, 10154–10160 (2017). https://doi.org/10.1039/c7ta02427d

    Article  Google Scholar 

  9. R. Yu et al., Two well-miscible acceptors work as one for efficient fullerene-free organic solar cells. Adv. Mater. 29, 1700437 (2017). https://doi.org/10.1002/adma.201700437

    Article  Google Scholar 

  10. J. Wei et al., Enhanced light harvesting in perovskite solar cells by a bioinspired nanostructured back electrode. Adv. Energy Mater. 7, 1700492 (2017). https://doi.org/10.1002/aenm.201700492

    Article  Google Scholar 

  11. M.-K. Chuang, F.-C. Chen, Synergistic plasmonic effects of metal nanoparticle–decorated pegylated graphene oxides in polymer solar cells. ACS Appl. Mater. Interfaces 7, 7397–7405 (2015). https://doi.org/10.1021/acsami.5b01161

    Article  Google Scholar 

  12. T. Fleetham et al., Photocurrent enhancements of organic solar cells by altering dewetting of plasmonic Ag nanoparticles. Sci. Rep. 5, 14250 (2015). https://doi.org/10.1038/srep14250

    Article  ADS  Google Scholar 

  13. H. Nourolahi et al., Silver nanoparticle plasmonic effects on hole-transport material-free mesoporous heterojunction perovskite solar cells. Sol. Energy 139, 475–483 (2016). https://doi.org/10.1016/j.solener.2016.10.023

    Article  ADS  Google Scholar 

  14. P. Reineck, D. Brick, P. Mulvaney, U. Bach, Plasmonic hot electron solar cells: the effect of nanoparticle size on quantum efficiency. J. Phys. Chem. Lett. 7, 4137–4141 (2016). https://doi.org/10.1021/acs.jpclett.6b01884

    Article  Google Scholar 

  15. C. Sugnaux et al., Polymer brush guided formation of conformal, plasmonic nanoparticle-based electrodes for microwire solar cells. Adv. Funct. Mater. 25, 3958–3965 (2015). https://doi.org/10.1002/adfm.201404235

    Article  Google Scholar 

  16. L. Wang et al., 2D photovoltaic devices: progress and prospects. Small Methods 2, 1700294 (2018). https://doi.org/10.1002/smtd.201700294

    Article  Google Scholar 

  17. S. Bae et al., Growth of silver nanowires from controlled silver chloride seeds and their application for fluorescence enhancement based on localized surface plasmon resonance. Small 13, 1603392 (2017). https://doi.org/10.1002/smll.201603392

    Article  Google Scholar 

  18. J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10, 361–366 (2011). https://doi.org/10.1038/nmat3004

    Article  ADS  Google Scholar 

  19. P. Zijlstra, P.M.R. Paulo, M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 7, 379–382 (2012). https://doi.org/10.1038/nnano.2012.51

    Article  ADS  Google Scholar 

  20. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010). https://doi.org/10.1038/nmat2629

    Article  ADS  Google Scholar 

  21. W.-H. Tseng et al., Shape-dependent light harvesting of 3D gold nanocrystals on bulk heterojunction solar cells: plasmonic or optical scattering effect? J. Phys. Chem. C. 119, 7554–7564 (2015). https://doi.org/10.1021/jp512192e

    Article  Google Scholar 

  22. J.-L. Wu et al., Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano. 5, 959–967 (2011). https://doi.org/10.1021/nn102295p

    Article  Google Scholar 

  23. E.S. Arinze, B. Qiu, G. Nyirjesy, S.M. Thon, Plasmonic nanoparticle enhancement of solution-processed solar cells: practical limits and opportunities. ACS Photonics 3, 158–173 (2016). https://doi.org/10.1021/acsphotonics.5b00428

    Article  Google Scholar 

  24. D. Chi et al., Fully understanding the positive roles of plasmonic nanoparticles in ameliorating the efficiency of organic solar cells. Nanoscale 7, 15251–15257 (2015). https://doi.org/10.1039/c5nr04069h

    Article  ADS  Google Scholar 

  25. Y. Cui et al., Aluminium nanoparticles synthesized by a novel wet chemical method and used to enhance the performance of polymer solar cells by the plasmonic effect. J. Mater. Chem. C. 3, 4099–4103 (2015). https://doi.org/10.1039/c5tc00213c

    Article  Google Scholar 

  26. S.-A. Gopalan et al., A new optical-electrical integrated buffer layer design based on gold nanoparticles tethered thiol containing sulfonated polyaniline towards enhancement of solar cell performance. Sol. Energy Mater. Sol. Cells 174, 112–123 (2018). https://doi.org/10.1016/j.solmat.2017.08.029

    Article  Google Scholar 

  27. E. Kymakis et al., Plasmonic bulk heterojunction solar cells: the role of nanoparticle ligand coating. ACS Photonics 2, 714–723 (2015). https://doi.org/10.1021/acsphotonics.5b00202

    Article  Google Scholar 

  28. G. Luo et al., Recent advances in organic photovoltaics: device structure and optical engineering optimization on the nanoscale. Small 12, 1547–1571 (2016). https://doi.org/10.1002/smll.201502775

    Article  Google Scholar 

  29. M. Sygletou et al., Enhanced stability of aluminum nanoparticle-doped organic solar cells. ACS Appl. Mater. Interfaces 7, 17756–17764 (2015). https://doi.org/10.1021/acsami.5b03970

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A4A10520850)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jea-Gun Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JH., Park, JG. Enhanced performance of polymer solar cells using selective silver nanocrystal morphology. J. Korean Phys. Soc. 79, 49–56 (2021). https://doi.org/10.1007/s40042-021-00215-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00215-x

Keywords

Navigation