Skip to main content
Log in

Selective Treatment of Light Catalytic Cracking Gasoil with N-Methylpyrrolidone to Obtain a High-Density Jet Fuel Component or a Liquid Organic Hydrogen Carrier

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Extraction of undesirable components from light catalytic cracking gasoil with N-methylpyrrolidone was studied. Extraction conditions were chosen, and the influence of the solvent to feed ratio on the process results was determined. Low solvent to feed ratios are favorable for obtaining highly concentrated extracts for the subsequent production of a liquid organic hydrogen carrier from them. The solvent to feed ratio of 0.75 : 1.00 can be recommended for obtaining a high-density jet fuel component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kapustin, V.M. and Gureev, A.A., Tekhnologiya pererabotki nefti (Oil Refining Technology), part 2: Destruktivnye protsessy (Destructive Processes), Moscow: Khimiya, 2007.

    Google Scholar 

  2. Ryabov, V.D., Khimiya nefti i gaza (Oil and Gas Chemistry), Moscow: Tekhnika, 2004, pp. 171–233.

    Google Scholar 

  3. Aliev, R.R., Katalizatory i protsessy pererabotki nefti (Oil Refining Catalysts and Processes), Moscow: VNIINP, 2010.

    Google Scholar 

  4. Stanislaus, A., Marafi, A., and Rana, M.S., Catal. Today, 2010, vol. 153, pp. 1–68. https://doi.org/10.1016/j.cattod.2010.05.011

    Article  CAS  Google Scholar 

  5. Maximov, N.M., Tomina, N.N., Solmanov, P.S., and Pimerzin, A.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 4, pp. 574–581. https://doi.org/10.1134/S1070427217040139 

    Article  CAS  Google Scholar 

  6. Arribas, M.A., Corma, A., Diaz-Cabanas, M.J., and Martinez, A., Appl. Catal. A: General, 2004, vol. 273, pp. 277–286. https://doi.org/10.1016/j.apcata.2004.06.051

    Article  CAS  Google Scholar 

  7. Cooper, B.H. and Donnis, B.B.L., Appl. Catal. A: General, 1996, vol. 137, pp. 203–223. https://doi.org/10.1016/0926-860X(95)00258-8

    Article  CAS  Google Scholar 

  8. Gaile, A.A., Vereshchagin, A.V., and Klement’ev, V.N., Russ. J. Appl. Chem., 2019, vol. 92, no. 5, pp. 583–595. https://doi.org/10.1134/S107042721905001X 

    Article  CAS  Google Scholar 

  9. Akhmetov, A.V., Osipenko, A.G., Aminev, T.R., Kagilev, A.A., and Akhmetov, A.F., Neftepererab. Neftekhim., 2013, no. 8, pp. 5–8.

    Google Scholar 

  10. Patent RU 2699629, Publ. 2019.

  11. Patent RU 2725230, Publ. 2020.

  12. Yusif-Zadeh, A.A. and Gurbanov, A.Sh., Theor. Appl. Sci., 2018, vol. 68, no. 12, pp. 49–52. https://doi.org/10.15863/TAS.2018.12.68.9

    Article  Google Scholar 

  13. Kolbin, V.A., Dezortsev, S.V., Telyashev, A.G., Kreimer, M.L., and Akhmetov, A.F., Bashk. Khim. Zh., 2016, vol. 23, no. 1, pp. 3–6.

    CAS  Google Scholar 

  14. Gaile, A.A., Zalishchevskii, G.D., Semenov, L.V., Khadartsev, A.Ch., Varshavskii, O.M., and Fedyanin, N.P., Russ. J. Appl. Chem., 2004, vol. 77, no. 4, pp. 566–570. https://doi.org/10.1023/B:RJAC.0000038668.62099.50 

    Article  CAS  Google Scholar 

  15. Gaile, A.A., Dyurik, N.M., Semenov, L.V., Chagovets, A.N., Ustalov, A.V., Koldobskaya, L.L., and Stepanova, G.F., Russ. J. Appl. Chem., 2003, vol. 76, no. 1, pp. 140–143. https://doi.org/10.1023/A:1023372623276 

    Article  CAS  Google Scholar 

  16. Gaile, A.A., Somov, V.E., Zalishchevskii, G.D., Kaifadzhyan, E.A., and Koldobskaya, L.L., Russ. J. Appl. Chem., 2006, vol. 79, no. 4, pp. 590–595. https://doi.org/10.1134/S1070427206040161 

    Article  CAS  Google Scholar 

  17. Appazov, A.Yu., Pykhalova, N.V., and Balamedova, U.A., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2012, vol. 55, no. 2, pp. 71–73.

    CAS  Google Scholar 

  18. Shishkin, S.N., Gaile, A.A., Bakaushina, D.A., and Kuzichkin, N.V., in Materialy Mezhdunarodnoi nauchnoi konferentsii “Resursosberezhenie v khimicheskoi tekhnologii” (Proc. Int. Scientific Conf. “Resource Saving in Chemical Technology), 2012, pp. 113–115.

    Google Scholar 

  19. Kameshkov, A.V., Gaile, A.A., Kuzichkin, N.V., and Spetsov, E.A., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2015, no. 31, pp. 72–74.

    Google Scholar 

  20. Ismailova, S.S., Nauka, Tekh. Obraz., 2018, no. 2 (43), pp. 17–22.

    Google Scholar 

  21. Kameshkov, A.V., Gaile, A.A., Kuzihkin, N.V., and Spetsov, N.V., Neftepererab. Neftekhim., 2015, no. 10, pp. 6–11.

    Google Scholar 

  22. Kameshkov, A.V., Gaile, A.A., Kuzihkin, N.V., and Khasanova, A.A., Neftepererab. Neftekhim., 2015, no. 12, pp. 3–6.

    Article  Google Scholar 

  23. Gaile, A.A., Chistyakov, V.N., Koldobskaya, L.L., and Kolesov, V.V., Chem. Technol. Fuels Oils, 2011, vol. 47, p. 172. https://doi.org/10.1007/s10553-011-0277-0

    Article  CAS  Google Scholar 

  24. Siryuk, A.G. and Zimina, K.I., Khim. Tekhnol. Topl. Masel, 1963, no. 2, pp. 52–56.

    Google Scholar 

  25. Kam’yanov, V.F., Aksenov, V.S., and Titov, V.I., Geteroatomnye komponenty nefti (Heteroatomic Oil Components), Novosibirsk: Nauka, 1983.

    Google Scholar 

Download references

Funding

The study was financially supported by the Russian Federation Government, resolution no. 220 of April 9, 2010, grant no. 14.Z50.31.0038 of February 20, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Maksimov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 4, pp. 507–515, January, 2021 https://doi.org/10.31857/S0044461821040101

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimov, N.M., Solmanov, P.S., Moiseev, A.V. et al. Selective Treatment of Light Catalytic Cracking Gasoil with N-Methylpyrrolidone to Obtain a High-Density Jet Fuel Component or a Liquid Organic Hydrogen Carrier. Russ J Appl Chem 94, 501–508 (2021). https://doi.org/10.1134/S1070427221040108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221040108

Keywords:

Navigation