Skip to main content
Log in

Influence of the Hydrothermal Synthesis Conditions on the Photocatalytic Activity of Titanium Dioxide Nanorods

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Films of TiO2 nanorods prepared under different conditions of hydrothermal synthesis were studied. With an increase in the hydrothermal synthesis temperature at a synthesis time of 24 h, the length of the TiO2 nanorods formed first increases and then decreases, and the nanorod diameter changes. The TiO2 film consisting of nanorods 4100 nm long and 100 nm in diameter, prepared at 180°C, exhibits the highest photocatalytic activity. This effect is predominantly associated with high specific surface area of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Lazar, M.A., Varghese, S., and Nair, S.S., Catalysts, 2012, vol. 2, no. 4, pp. 572–601. https://doi.org/10.3390/catal2040572

    Article  CAS  Google Scholar 

  2. Zhao, Y., Hoivik, N., and Wang, K.Y., Nano Energy, 2016, vol. 30, pp. 728–744. https://doi.org/10.1016/j.nanoen.2016.09.027

    Article  CAS  Google Scholar 

  3. Serikov, T.M., Ibrayev, N.K., Nuraje, N., Savilov, S.V., and Lunin, V.V., Russ. Chem. Bull., 2017, vol. 66, no. 4, pp. 614–621. https://doi.org/10.1007/s11172-017-1781-0 

    Article  CAS  Google Scholar 

  4. Wang, F.Y., Song, L.F., and Zhang, H.C., J. Electron. Mater., 2017, vol. 46, no. 8, pp. 4716–4724. https://doi.org/10.1007/s11664-017-5491-z

    Article  CAS  Google Scholar 

  5. Serikov, T.M., Ibrayev, N.K., and Smagulov, Z., IOP Conf. Ser. Mater. Sci. Eng., 2016, vol. 110, ID 012066. https://doi.org/10.1088/1757-899X/110/1/012066

    Article  Google Scholar 

  6. Yamazaki, Y., Fujitsuka, M., and Yamazaki, S., ACS Appl. Nano Mater., 2019, vol. 2, pp. 5890−5899. https://doi.org/10.1021/acsanm.9b01334

    Article  CAS  Google Scholar 

  7. Liu, B., Boercker, J.E., and Aydil, E.S., Nanotechnology, 2008, vol. 19, no. 50, pp. 505604–505609. https://doi.org/10.1088/0957-4484/19/50/505604

    Article  CAS  PubMed  Google Scholar 

  8. Yamazaki, Y., Azami, K., Katoh, R., and Yamazaki, S., ACS Appl. Nano Mater., 2018, vol. 10, pp. 5927–5935. https://doi.org/10.1021/acsanm.8b01617

    Article  CAS  Google Scholar 

  9. Hwang, Y.J., Hahn, C., Liu, B., and Yang, P., ACS Nano, 2012, vol. 6, no. 6, pp. 5060–5069. https://doi.org/10.1021/nn300679d

    Article  CAS  PubMed  Google Scholar 

  10. Kerkez, Ö. and Boz, I., React. Kinet. Mech. Catal., 2013, vol. 110, pp. 543–557. https://doi.org/10.1007/s11144-013-0616-8

    Article  CAS  Google Scholar 

  11. Liu, B. and Aydil, E.S., J. Am. Chem. Soc., 2009, vol. 131, no. 11, pp. 3985–3990. https://doi.org/10.1021/ja8078972

    Article  CAS  PubMed  Google Scholar 

  12. Ravidhas, C., Anitha, B., Arivukarasan, D., Venkatesh, R., Christy, A.J., Jothivenkatachalam, K., and Sanjeeviraja, C., J. Mater. Sci.: Mater. Electron., 2016, vol. 27, no. 5, pp. 5020–5032. https://doi.org/10.1007/s10854-016-4389-5

    Article  CAS  Google Scholar 

  13. Kwon, C.H., Shin, H.M., Kim, J.H., Choi, W.S., and Yoon, K.H., Mater. Chem. Phys., 2004, vol. 86, no. 1, pp. 78–82. https://doi.org/10.1016/j.matchemphys.2004.02.024

    Article  CAS  Google Scholar 

  14. Kahr, G. and Madsen, F.T., Appl. Clay Sci., 1995, vol. 9, no. 5, pp. 327–336. https://doi.org/10.1016/0169-1317(94)00028-o

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of grants of the Scientific Committee of the Ministry of Education and Science of the Kazakhstan Republic: Grants for Supporting Postdoc (PhD) Research and Training. Grant Program of Type A, nos. APP-PHD-A-19/004P and AP08052675, and also within the framework of the government assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of basic research and of the state budget theme of the Faculty of Chemistry of the Moscow State University “Catalysis and Physical Chemistry of the Surface” (state registry no. AAAA-A16-116092810057-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Serikov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 4, pp. 445–452, January, 2021 https://doi.org/10.31857/S0044461821040034

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serikov, T.M., Ibrayev, N.K., Ivanova, T.M. et al. Influence of the Hydrothermal Synthesis Conditions on the Photocatalytic Activity of Titanium Dioxide Nanorods. Russ J Appl Chem 94, 442–449 (2021). https://doi.org/10.1134/S1070427221040030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221040030

Keywords:

Navigation