Skip to main content
Log in

SIZE OF METAL NANOPARTICLES AS A DECISIVE FACTOR IN THE FORMATION OF NICKEL – GRAPHENE COMPOSITE: MOLECULAR DYNAMICS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The size effect of nickel nanoparticles on the process of nickel–graphene composite formation is studied by molecular dynamics. It is shown that the best mixing of single structural elements in the general structure is achieved at high temperatures which cause fluctuations resulting in additional chemical bonds between graphene flakes. However, particle size is one of the most important structural factors affecting the composite structure: larger nanoparticles maintain their spherical shape even at high temperatures and prevent the formation of a uniform composite structure. The obtained results enrich our understanding of processes underlying the formation of composites based on crumpled graphene and metal nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. J. C. Sun, Z. C. Bai, Z. L. Huang, and Z. P. Zhang. Lett. Mater., 2020, 10(2), 200, DOI: 10.22226/2410-3535-2020-2-200-205.

    Article  Google Scholar 

  2. O. Y. Kurapova, I. V. Smirnov, E. N. Solovyeva, I. Y. Archakov, and V. G. Konakov. Lett. Mater., 2020, 10(2), 164, DOI: 10.22226/2410-3535-2020-2-164-169.

    Article  Google Scholar 

  3. L. R. Safina, J. A. Baimova, K. A. Krylova, R. T. Murzaev, and R. R. Mulyukov. Lett. Mater., 2020, 10(3), 351, DOI: .

    Article  Google Scholar 

  4. R. K. Khisamov, K. S. Nazarov, P. V. Trinh, A. A. Nazarov, and D. D. Phuong, R.R. Mulyukov. Lett. Mater., 2019, 9(4s), 566, DOI: .

    Article  Google Scholar 

  5. X. Y. Zhao, J. C. Tang, F. X. Yu, and N. Ye. J. Alloys Compd., 2018, 766, 266, DOI: .

    Article  CAS  Google Scholar 

  6. Z. Y. Zhao, P. K. Bai, R. D. K. Misra, M. Dong, R. Guan, Y. Li, J. Zhang, L. Tan, J. Gao, T. Ding, W. Du, and Z. Guo.

    Article  CAS  Google Scholar 

  7. K. Chu, F. Wang, X. Wang, Y. Li, Z. Geng, D. Huang, and H. Zhang. Mater. Des., 2018, 144, 290, .

    Article  CAS  Google Scholar 

  8. N. Park, D. Sung, S. Lim, S. Moon, and S. Hong. Appl. Phys. Lett., 2009, 94, 073105, DOI: 10.1063/1.3083548.

    Article  CAS  Google Scholar 

  9. S. Inoue and Y. Matsumura. Chem. Phys. Lett., 2008, 469(1-3), 125, DOI: 10.1016/j.cplett.2008.12.093.

    Article  CAS  Google Scholar 

  10. L. R. Safina, J. A. Baimova, and R. R. Mulyukov. Mech. Adv. Mater. Mod. Process., 2019, 5(2), 1, DOI: 10.1186/s40759-019-0042-3.

    Article  Google Scholar 

  11. A. E. Galashev and V. A. Polukhin. Phys. Solid State, 2013, 55, 2368, DOI: 10.1134/S1063783413110085.

    Article  CAS  Google Scholar 

  12. A. E. Galashev. High Temp., 2014, 52, 633, DOI: 10.1134/S0018151X1405006X.

    Article  CAS  Google Scholar 

  13. V. S. Myasnichenko, M. Razavi, M. Outokesh, N. Y. Sdobnyakov, and M. D. Starostenkov. Lett. Mater., 2016, 6(4), 260, DOI: 10.22226/2410-3535-2016-4-266-270.

    Article  Google Scholar 

  14. I. V. Chepkasov, Y. Y. Gafner, E. D. Kurbanova, and V. A. Polukhin. Lett. Mater., 2014, 4(4), 249, DOI: 10.22226/2410-3535-2014-4-249-252.

    Article  Google Scholar 

  15. M. Li, L. Lin, R. Guo, A. Bhalla, and X. Zeng. J. Micromech. Mol. Phys., 2017, 02(3), 1750010, DOI: 10.1142/S2424913017500102.

    Article  CAS  Google Scholar 

  16. H.-Y. Song and X.-W. Zha. Phys. Lett. A, 2010, 374(8), 1068, DOI: 10.1016/j.physleta.2009.12.035.

    Article  CAS  Google Scholar 

  17. Z. Ren, N. Meng, K. Shehzad, Y. Xu, S. Qu, B. Yu, and J. K. Luo. Nanotechnology, 2015, 26, 065706, DOI: 10.1088/0957-4484/26/6/065706.

    Article  CAS  PubMed  Google Scholar 

  18. Y. Kim, J. Lee, M. S. Yeom, J. W. Shin, H. Kim, Y. Cui, J. W. Kysar, J. Hone, Y. Jung, S. Jeon, and S. M. Han. Nat. Commun., 2013, 4, 2114, DOI: 10.1038/ncomms3114.

    Article  CAS  PubMed  Google Scholar 

  19. C. M. P. Kumar, T. V. Venkatesha, and R. Shabadi. Mater. Res. Bull., 2013, 48(4), 1477, DOI: .

    Article  CAS  Google Scholar 

  20. L. Xiang, Q. Shen, Y. Zhang, W. Bai, and C. Nie. Surf. Coat. Technol., 2019, 373, 38, DOI: 10.1016/j.surfcoat.2019.05.074.

    Article  CAS  Google Scholar 

  21. D. Kuang, L. Xu, L. Liu, W. Hu, and Y. Wu. Appl. Surf. Sci., 2013, 273, 484, DOI: 10.1016/j.apsusc.2013.02.066.

    Article  CAS  Google Scholar 

  22. H. Zhou, D. Liu, F. Luo, B. Luo, Y. Tian, D. Chen, and C. Shen. Micro Nano Lett., 2018, 13(6), 842, DOI: 10.1049/mnl.2017.0922.

    Article  CAS  Google Scholar 

  23. J. Luo, H. D. Jang, and J. Huang. ACS Nano, 2013, 7(2), 1464, DOI: 10.1021/nn3052378.

    Article  CAS  PubMed  Google Scholar 

  24. J. Luo, H. D. Jang, T. Sun, L. Xiao, Z. He, A. P. Katsoulidis, and J. Huang. ACS Nano, 2011, 5(11), 8943, DOI: 10.1021/nn203115u.

    Article  CAS  PubMed  Google Scholar 

  25. D. Chen, X. Liu, and H. Nie. J. Colloid Interface Sci., 2018, 530, 46, .

    Article  CAS  PubMed  Google Scholar 

  26. Z. Tang, X. Li, T. Sun, S. Shen, and X. Huixin, J. Yang. Microporous Mesoporous Mater., 2018, 272, 40, DOI: .

    Article  CAS  Google Scholar 

  27. A. B. Savin, E. A. Korznikova, I. P. Lobzenko, J. A. Baimova, and S. V. Dmitriev. Phys. Solid State, 2016, 6, 1236.

  28. G. E. Froudakis. Mater. Today, 2011, 14(7-8), 324, DOI: 10.1016/S1369-7021(11)70162-6.

    Article  CAS  Google Scholar 

  29. Y. Chen, F. Guo, A. Jachak, S. Kim, D. Datta, J. Liu, I. Kulaots, C. Vaslet, H. D. Jang, J. Huang, A. Kane, V. B. Shenoy. and R. H. Hurt. Nano Lett., 2012, 12(4), 1996, DOI: 10.1021/nl2045952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. C. Chang, Z. Song, J. Linb, and Z. Xu. RSC Adv., 2013, 3, 2720, DOI: 10.1039/C2RA21563B.

    Article  CAS  Google Scholar 

  31. M. Becton, L. Zhang, and X. Wang. Phys. Chem. Chem. Phys., 2015, 17, 6297, DOI: 10.1039/C4CP05813E.

    Article  CAS  PubMed  Google Scholar 

  32. K. A. Krylova, J. A. Baimova, I. P. Lobzenko, and A. I. Rudskoy. Phys. B, 2020, 583, 412020, DOI: 10.1016/j.physb.2020.412020.

    Article  CAS  Google Scholar 

  33. J. A. Baimova, B. Liu, S. V. Dmitriev, and K. Zhou. J. Phys. D: Appl. Phys., 2015, 48, 095302, DOI: 10.1088/0022-3727/48/9/095302.

    Article  CAS  Google Scholar 

  34. J. A. Baimova, L. K. Rysaeva, B. Liu, S. V. Dmitriev, and K. Zhou. Phys. Status Solidi, 2015, 252(7), 1502, DOI: 10.1002/pssb.201451654.

    Article  CAS  Google Scholar 

  35. E. A. Korznikova, J. A. Baimova, S. V. Dmitriev, A. V. Korznikov, and R. R. Mulyukov. Rev. Adv. Mater. Sci., 2014, 39, 92.

  36. J. A. Baimova, E. A. Korznikova, S. V. Dmitriev, B. Liu, and K. Zhou. Rev. Adv. Mater. Sci., 2014, 39, 69.

  37. S. J. Stuart, A. B. Tutein, and J. A. Harrison. J. Chem. Phys., 2000, 112, 6472, DOI: 10.1063/1.481208.

    Article  CAS  Google Scholar 

  38. J. A. Baimova, L. Bo, S. V. Dmitriev, K. Zhou, and A. A. Nazarov. Europhys. Lett., 2013, 103, 46001, DOI: 10.1209/0295-5075/103/46001.

    Article  CAS  Google Scholar 

  39. A. K. Singh and R. G. Hennig. Phys. Rev. B, 2013, 87, 094119, DOI: 10.1103/PhysRevB.87.094112.

    Article  Google Scholar 

  40. A. Y. Galashev, K. P. Katin, and M. M. Maslov. Phys. Lett. A, 2019, 383(2-3), 252, DOI: 10.1016/j.physleta.2018.10.025.

    Article  CAS  Google Scholar 

  41. K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov. Micro Nano Lett., 2018, 13(2), 164, DOI: 10.1049/mnl.2017.0460.

    Article  CAS  Google Scholar 

  42. L. A. Girifalco and V. G. Weizer. Phys. Rev., 1959, 114, 687, DOI: 10.1103/PhysRev.114.687.

    Article  CAS  Google Scholar 

  43. I. A. Shepelev, S. V. Dmitriev, A. A. Kudreyko, M .G. Velarde, and E. A. Korznikova. Chaos, Solitons Fractals, 2020, 140, 110217, DOI: 10.1016/j.chaos.2020.110217.

    Article  Google Scholar 

  44. I. A. Shepelev, D. V. Bachurin, E. A. Korznikova, and S. V. Dmitriev. Eur. Phys. J. B, 2020, 93, 167, DOI: 10.1140/epjb/e2020-10160-0.

    Article  CAS  Google Scholar 

  45. Y. A. Baimova, S. V. Dmitriev, N. N. Kuranova, R. R. Mulyukov, A. V. Pushin, and V. G. Pushin. Phys. Met. Metallogr., 2018, 119, 589, DOI: 10.1134/S0031918X18060042.

    Article  CAS  Google Scholar 

  46. G. M. Poletaev and M. D. Starostenkov. Fundam. Probl. Sovrem. Materialoved., 2004, 1(1), 81.

  47. M. D. Starostenkov, G. M. Poletayev, and D. M. Starostenkov. J. Mater. Sci. Technol., 2001, 17(1), 59.

  48. V. Yu. Krasnov, G. M. Poletaev, and M. D. Starostenkov. Fundam. Probl. Sovrem. Materialoved., 2006, 3(4), 37.

  49. G. M. Poletaev, A. V. Sannikov, A. A. Berdychenko, and M. D. Starostenkov. Mater. Phys. Mech., 2015, 22, 15.

  50. J. H. Los, K. V. Zakharchenko, M. I. Katsnelson, and A. Fasolino. Phys. Rev. B, 2015, 91, 045415, DOI: 10.1103/PhysRevB.91.045415.

    Article  Google Scholar 

  51. L. A. Openov and A. I. Podlivaev. Phys. Solid State, 2016, 58, 847, DOI: 10.1134/S1063783416040168.

    Article  CAS  Google Scholar 

  52. E. Ganz, A. B. Ganz, L. M. Yang, and M. Dornfeld. Phys. Chem. Chem. Phys., 2017, 19, 3756, DOI: 10.1039/C6CP06940A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. L. R. Safina and J. A. Baimova. Micro Nano Lett., 2019, 15(3), 176, DOI: 10.1049/mnl.2019.0414.

    Article  CAS  Google Scholar 

  54. K. A. Krylova and L. R. Safina. J. Phys. Conf. Ser., 2020, 1435, 012064, DOI: 10.1088/1742-6596/1435/1/012064.

    Article  CAS  Google Scholar 

  55. L. R. Safina and J. A. Baimova. Mekh. Kompoz. Mater. Konstr., 2019, 25(4), 531, DOI: 10.33113/mkmk.ras.2019.25.04.531_542.06.

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the Russian Science Foundation (grant No. 20-72-10112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Safina.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 5, pp. 852-860.https://doi.org/10.26902/JSC_id72914

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safina, L.R., Murzaev, R.T. SIZE OF METAL NANOPARTICLES AS A DECISIVE FACTOR IN THE FORMATION OF NICKEL – GRAPHENE COMPOSITE: MOLECULAR DYNAMICS. J Struct Chem 62, 794–801 (2021). https://doi.org/10.1134/S0022476621050152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621050152

Keywords

Navigation