Skip to main content
Log in

Papkovich–Neuber type representations with differential forms

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We derive Papkovich–Neuber type representations for the solutions of Navier–Lamé equations in linear elastostatics and of the stationary Stokes equations using exterior calculus on the Euclidean space. We generalize the result for two-dimensional Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angoshtari, A., Yavari, A.: Hilbert complexes of nonlinear elasticity. Z. Angew. Math. Phys. 67–143 (2016)

  2. Chan, C., Czubak, M., Disconzi, M.: The formulation of the Navier–Stokes equations on Riemannian manifolds. J. Geom. Phys. 121, 335–346 (2017)

    Article  MathSciNet  Google Scholar 

  3. Costabel, M., McIntosh, A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265–297 (2010)

  4. Deshmukh, S.: Geometry of conformal vector fields. Arab. J. Math. Sci. 23, 44–73 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Evangelista, I., Viana, E.: Conformal gradient vector fields on Riemannian manifolds with boundary. Colloquium Mathematicum 159, 231–241 (2020)

    Article  MathSciNet  Google Scholar 

  6. Freiberger, W.: On the solution of the equilibrium equations of elasticity in general, curvilinear coordinates. Aust. J. Sci. Res. (A) 2, 483–492 (1949)

    MathSciNet  Google Scholar 

  7. Hou, L.S., Manouzi, H.: A div-curl formulation of the Stokes boundary value problem based on a harmonic representation formula. Appl. Math. Lett. 6(6), 23–27 (1993). https://doi.org/10.1016/0893-9659(93)90072-U

    Article  MathSciNet  MATH  Google Scholar 

  8. Kratz, W.: On the representation of Stokes flows. SIAM J. Math. Anal. 22(2), 414–423 (1991)

    Article  MathSciNet  Google Scholar 

  9. Kratz, W., Lindae, A.: A representation formula for three-dimensional Stokes flows. Zeitschrift für Analysis und ihre Anwendungen 11(3), 371–375 (1992)

    Article  MathSciNet  Google Scholar 

  10. Millar, R.F.: On the completeness of the Papkovich potentials. Q. Appl. Math. 41(4), 385–393 (1984)

    Article  MathSciNet  Google Scholar 

  11. Neuber, H.: Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie. Z. Angew. Math. Mech. 14, 203–212 (1934). ((in German))

    Article  Google Scholar 

  12. Papkovich, P.F.: Solution Générale des équations differentielles fondamentales d’élasticité exprimée par trois fonctions harmoniques. Comput. Rend. Acad. Sci. Paris 195, 513–515 (1932). (in French)

    MATH  Google Scholar 

  13. Samavaki, M., Tuomela, J.: Navier–Stokes equations on Riemannian manifolds. J. Geom. Phys. 148, 103543 (2020)

    Article  MathSciNet  Google Scholar 

  14. Stippes, M.: Completeness of the Papkovich potentials. Q. Appl. Math. 26, 477–483 (1969)

    Article  MathSciNet  Google Scholar 

  15. Tran-Cong, T.: On the completeness and uniqueness of the Papkovich-Neuber and the non-axisymmetric Boussinesq, Love, and Burgatti solutions in general cylindrical coordinates. J. Elasticity 36, 227–255 (1995)

    Article  MathSciNet  Google Scholar 

  16. Zsuppán, S.: On representations of Stokes flows and of the solutions of Naviers equation for linear elasticity. Analysis 28(2), 219–237 (2008)

    Article  MathSciNet  Google Scholar 

  17. Zsuppán, S.: On Papkovich–Neuber type representations for solutions of the Navier–Lamé equation in spatial star-shaped domains. Dimenziók: matematikai közlemények 7, 3–8 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The author is highly thankful to the anonymous reviewers for the helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Zsuppán.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zsuppán, S. Papkovich–Neuber type representations with differential forms. Z. Angew. Math. Phys. 72, 140 (2021). https://doi.org/10.1007/s00033-021-01568-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01568-w

Keywords

Mathematics Subject Classification

Navigation