Skip to main content
Log in

Well-posedness and regularity of Caputo–Hadamard fractional stochastic differential equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We prove the existence and uniqueness of the solutions to a Caputo–Hadamard fractional stochastic differential equation driven by a multiplicative white noise, which may describe the random phenomena in the ultraslow diffusion processes. The moment estimates are given in terms of the logarithmic Mittag–Leffler function. We also prove the regularity of the solutions via the logarithmic Hölder continuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bénichou, O., Oshanin, G.: Ultraslow vacancy-mediated tracer diffusion in two dimensions: the Einstein relation verified. Phys. Rev. E 66, 031101 (2002)

    Article  Google Scholar 

  2. Coclite, G., Dipierro, S., Maddalena, F., Valdinoci, E.: Wellposedness of a nonlinear peridynamic model. Nonlinearity 32, 1 (2018)

    Article  MathSciNet  Google Scholar 

  3. Coclite, G., Dipierro, S., Maddalena, F., Valdinoci, E.: Singularity formation in fractional Burgers equations. J. Nonlinear Sci. 30, 1285 (2020)

    Article  MathSciNet  Google Scholar 

  4. Coclite, G., Risebro, N.: A difference method for the McKean-Vlasov equation. Z. Angew. Math. Phys. 70, 149 (2019)

    Article  MathSciNet  Google Scholar 

  5. Coclite, G.M., Coclite, M.M., Mishra, S.: On a model for the evolution of morphogens in a growing tissue. SIAM J. Math. Anal. 48, 1575–1615 (2016)

    Article  MathSciNet  Google Scholar 

  6. Coclite, G.M., Coclite, M.M.: On a model for the evolution of morphogens in a growing tissue II: \(\theta =\log (2)\) case. Z. Angew. Math. Phys. 68, 92–112 (2017)

    Article  Google Scholar 

  7. Coclite, G.M., Coclite, M.M.: On a model for the evolution of morphogens in a growing tissue III: \(\theta {<}\log (2)\). J. Differ. Equ. 263, 1079–1124 (2017)

  8. Coclite, G.M., Coclite, M.M.: Long time behavior of a model for the evolution of morphogens in a growing tissue. SN Partial Differ. Equ. Appl. 1, 39 (2020)

    Article  Google Scholar 

  9. G. M. Coclite and M. M. Coclite. Long time behavior of a model for the evolution of morphogens in a growing tissue II: \(\theta {<}\log 2\). J. Differ. Equ. 272, 1015–1049 (2021)

  10. Coclite, G.M., Fanizzi, A., Lopez, L., Maddalena, F., Pellegrino, S.F.: Numerical methods for the nonlocal wave equation of the peridynamics. Appl. Numer. Math. 155, 119–139 (2020)

    Article  MathSciNet  Google Scholar 

  11. G. M. Coclite, S. Dipierro, G. Fanizza, F. Maddalena and E. Valdinoci. Dispersive effects in a peridynamic model. arXiv:2105.01558v1

  12. Coclite, G.M., di Ruvo, L.: Vanishing viscosity for traffic on networks with degenerate diffusivity. Mediterr. J. Math. 16, 110 (2019)

    Article  MathSciNet  Google Scholar 

  13. Denisov, S.I., Kantz, H.: Continuous-time random walk theory of superslow diffusion. Europhys. Lett. 92, 30001 (2010)

    Article  Google Scholar 

  14. Dräger, J., Klafter, J.: Strong anomaly in diffusion generated by iterated maps. Phys. Rev. Lett. 84, 5998 (2000)

    Article  Google Scholar 

  15. Ervin, V., Heuer, N., Roop, J.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comp. 87, 2273–2294 (2018)

    Article  MathSciNet  Google Scholar 

  16. Hadamard, J.: Essai sur l’étude des fonctions, données par leure développement de Taylor. J. Pure Appl. Math. 4, 101–186 (1892)

    MATH  Google Scholar 

  17. Garra, R., Mainardi, F., Spada, G.: A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. Chaos Solitons Fractals 102, 333–338 (2017)

    Article  MathSciNet  Google Scholar 

  18. Gohar, M., Li, C., Yin, C.: On Caputo–Hadamard fractional differential equations. Int. J. Comput. Math. 97, 1–27 (2019)

    MathSciNet  Google Scholar 

  19. Gohar, M., Li, C., Li, Z.: Finite difference methods for Caputo–Hadamard fractional differential equations. Mediterr. J. Math. 17, 194 (2020)

    Article  MathSciNet  Google Scholar 

  20. Iglói, F., Turban, L., Rieger, H.: Anomalous diffusion in aperiodic environments. Phys. Rev. E 59, 1465 (1999)

    Article  Google Scholar 

  21. Jia, J., Wang, H.: A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes. Comput. Math. Appl. 78, 1345–1356 (2019)

    Article  MathSciNet  Google Scholar 

  22. Jia, J., Wang, H.: A fast finite volume method on locally refined meshes for fractional diffusion equations. East Asian J. Appl. Math. 9, 755–779 (2019)

    Article  MathSciNet  Google Scholar 

  23. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  24. Le. Gall, J.F.: Brownian Motion, Martingales, and Stochastic Calculus. Springer, New York (2016)

    Book  Google Scholar 

  25. Li, C., Li, Z., Wang, Z.: Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. J. Sci. Comput. 85(2), 1–27 (2020)

    Article  MathSciNet  Google Scholar 

  26. Ma, L., Li, C.: On Hadamard fractional calculus. Fractals 25, 1750033 (2017)

    Article  MathSciNet  Google Scholar 

  27. Ma, L.: On the kinetics of Hadamard-type fractional differential systems. Fract. Calc. Appl. Anal. 23, 553–570 (2020)

    Article  MathSciNet  Google Scholar 

  28. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  29. Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)

    MATH  Google Scholar 

  30. S.G. Samko, A.A. Kilbas and O.T. Marichev, Fractional integrals and derivatives (Vol. 1). Yverdon-les-Bains, Switzerland: Gordon and Breach Science Publishers, Yverdon. 1993

  31. Sanders, L.P., Lomholt, M.A., Lizana, L., Fogelmark, K., Metzler, R., Ambjörnsson, T.: Severe slowing-down and universality of the dynamics in disordered interacting many-body systems: ageing and ultraslow diffusion. New J. Phys. 16, 113050 (2014)

    Article  Google Scholar 

  32. Sandev, T., Iomin, A., Kantz, H., Metzler, R., Chechkin, A.: Comb model with slow and ultraslow diffusion. Math. Model. Nat. Phenom. 11, 18–33 (2016)

    Article  MathSciNet  Google Scholar 

  33. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Article  Google Scholar 

  34. Vanterler, J., Sousa, C., De. Oliveira, C.E.: A gronwall inequality and the Cauchy type problem by means of \(\psi \)-Hilfer operator. Differ. Equ. Appl. 11, 87–106 (2019)

  35. Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)

    Article  MathSciNet  Google Scholar 

  36. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM. J. Sci. Comput. 37, A2710–A2732 (2015)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Z., Karniadakis, G.E.: Numerical Methods for Stochastic Partial Differential Equations with White Noise. Springer, New York (2017)

    Book  Google Scholar 

  38. Zheng, X., Wang, H.: An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation. SIAM J. Numer. Anal. 58, 2492–2514 (2020)

    Article  MathSciNet  Google Scholar 

  39. Zheng, X., Zhang, Z., Wang, H.: Analysis of a nonlinear variable-order fractional stochastic differential equation. Appl. Math. Lett. 107, 106461 (2020)

    Article  MathSciNet  Google Scholar 

  40. Yang, Z., Zheng, X., Zhang, Z., Wang, H.: Strong convergence of Euler–Maruyama scheme to a variable-order fractional stochastic differential equation driven by a multiplicative white noise. Chaos Solitons Fractals 142, 110392 (2021)

    Article  MathSciNet  Google Scholar 

  41. Yang, Z., Zheng, X., Wang, H.: A variably distributed-order time-fractional diffusion equation: analysis and approximation. Comput. Methods Appl. Mech. Eng. 367, 113118 (2020)

    Article  MathSciNet  Google Scholar 

  42. Zheng, X., Wang, H.: A hidden-memory variable-order fractional optimal control model: analysis and approximation. SIAM J. Control Optim. 59, 1851–1880 (2021)

    Article  MathSciNet  Google Scholar 

  43. Zheng, X., Wang, H.: Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J. Numer. Anal. 41, 1522–1545 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their most sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially funded by the ARO MURI Grant W911NF-15-1-0562, by the National Science Foundation under Grant DMS-2012291, by the National Natural Science Foundation of China under Grant 12071262, and by the China Postdoctoral Science Foundation 2021TQ0017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zheng, X. & Wang, H. Well-posedness and regularity of Caputo–Hadamard fractional stochastic differential equations. Z. Angew. Math. Phys. 72, 141 (2021). https://doi.org/10.1007/s00033-021-01566-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01566-y

Keywords

Mathematics Subject Classification

Navigation