Skip to main content
Log in

Extracellular Oxidase from the Neonothopanus nambi Fungus as a Promising Enzyme for Analytical Applications

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The extracellular enzyme with oxidase function was extracted from the Neonothopanus nambi luminescent fungus by using mild processing of mycelium with β-glucosidase and then isolated by gel-filtration chromatography. The extracted enzyme is found to be a FAD-containing protein, catalyzing phenol co-oxidation with 4-aminoantipyrine without addition of H2O2, which distinguishes it from peroxidases. This fact allowed us to assume that this enzyme may be a mixed-function oxidase. According to gel-filtration chromatography and SDS-PAGE, the oxidase has molecular weight of 60 kDa. The enzyme exhibits maximum activity at 55–70 °C and pH 5.0. Kinetic parameters Km and Vmax of the oxidase for phenol were 0.21 mM and 0.40 µM min−1. We suggest that the extracted enzyme can be useful to develop a simplified biosensor for colorimetric detection of phenol in aqueous media, which does not require using hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

4-AAP:

4-Aminoantipyrine (1-phenyl-2,3-dimethyl-4-aminopyrazolone)

BSA:

Bovine serum albumin

DI:

Deionized water

FAD:

Flavin adenine dinucleotide

SDS-PAGE:

Sodium dodecyl sulfate- polyacrylamide gel electrophoresis

References

  1. Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  Google Scholar 

  2. Knop D, Yarden O, Hadar Y (2015) The ligninolytic peroxidases in the genus Pleurotus: divergence in activities, expression, and potential applications. Appl Microbiol Biotechnol 99:1025–1038

    Article  CAS  Google Scholar 

  3. Sützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, Haltrich D (2018) Multiplicity of enzymatic functions in the CAZy AA3 family. Appl Microbiol Biotechnol 102:2477–2492

    Article  Google Scholar 

  4. Daniel G, Nilsson T, Pettersson B (1989) Intra- and extracellular localization of lignin peroxidase during the degradation of solid wood and wood fragments by Phanerochaete chrysosporium by using transmission electron microscopy and immuno-gold labeling. Appl Environ Microbiol 55:871–881

    Article  CAS  Google Scholar 

  5. van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492

    Article  CAS  Google Scholar 

  6. Hernández-Ortega A, Ferreira P, Martínez AT (2012) Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 93:1395–1410

    Article  Google Scholar 

  7. Wongnate T, Chaiyen P (2013) The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily. FEBS J 280:3009–3027

    Article  CAS  Google Scholar 

  8. Ai M-Q, Wang F-F, Zhang Y-Z, Huang F (2014) Purification of pyranose oxidase from the white rot fungus Irpex lacteus and its cooperation with laccase in lignin degradation. Process Biochem 49:2191–2198

    Article  CAS  Google Scholar 

  9. Qiu H, Li Y, Ji G, Zhou G, Huang X, Qu Y, Gao P (2009) Immobilization of lignin peroxidase on nanoporous gold: enzymatic properties and in situ release of H2O2 by co-immobilized glucose oxidase. Bioresour Technol 100:3837–3842

    Article  CAS  Google Scholar 

  10. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385

    Article  CAS  Google Scholar 

  11. Martínková L, Kotik M, Marková E, Homolka L (2016) Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: a review. Chemosphere 149:373–382

    Article  Google Scholar 

  12. Galperin I, Javeed A, Luig H, Lochnit G, Rühl M (2016) An aryl-alcohol oxidase of Pleurotus sapidus: heterologous expression, characterization, and application in a 2-enzyme system. Appl Microbiol Biotechnol 100:8021–8030

    Article  CAS  Google Scholar 

  13. Martínez AT, Ruiz-Dueñas FJ, Camarero S et al (2017) Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv 35:815–831

    Article  Google Scholar 

  14. Li F, Ma W, Wu X, Wang Y, He J (2018) Luminol, horseradish peroxidase, and glucose oxidase ternary functionalized graphene oxide for ultrasensitive glucose sensing. Anal Bioanal Chem 410:543–552

    Article  CAS  Google Scholar 

  15. Şahin S, Wongnate T, Chuaboon L, Chaiyen P, Yu E (2018) Enzymatic fuel cells with an oxygen resistant variant of pyranose-2-oxidase as anode biocatalyst. Biosens Bioelectron 107:17–25

    Article  Google Scholar 

  16. Dubey MK, Zehra A, Aamir M, Meena M, Ahirwal L, Singh S, Shukla S, Upadhyay RS, Bueno-Mari R, Bajpai VK (2017) Improvement strategies, cost effective production, and potential applications of fungal glucose oxidase (GOD): current updates. Front Microbiol 8:1032

    Article  Google Scholar 

  17. Sarma R, Islam M, Running M, Bhattacharyya D (2018) Multienzyme immobilized polymeric membrane reactor for the transformation of a lignin model compound. Polymers 10:463

    Article  Google Scholar 

  18. Savino S, Fraaije MW (2020) The vast repertoire of carbohydrate oxidases: an overview. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2020.107634

    Article  PubMed  Google Scholar 

  19. Ferreira P, Medina M, Guillén F, Martínez M, van Berkel W, Martínez A (2005) Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols. Biochem J 389:731–738

    Article  CAS  Google Scholar 

  20. Tamaru Y, Umezawa K, Yoshida M (2018) Characterization of an aryl-alcohol oxidase from the plant saprophytic basidiomycete Coprinopsis cinerea with broad substrate specificity against aromatic alcohols. Biotechnol Lett 40:1077–1086

    Article  CAS  Google Scholar 

  21. Jankowski N, Koschorreck K, Urlacher VB (2020) High-level expression of aryl-alcohol oxidase 2 from Pleurotus eryngii in Pichia pastoris for production of fragrances and bioactive precursors. Appl Microbiol Biotechnol 104:9205–9218

    Article  CAS  Google Scholar 

  22. Goswami P, Chinnadayyala SS, Chakraborty M, Kumar AK, Kakoti A (2013) An overview on alcohol oxidases and their potential applications. Appl Microbiol Biotechnol 97:4259–4275

    Article  CAS  Google Scholar 

  23. Romero E, Ferreira P, Martínez Á, Martínez M (2009) New oxidase from Bjerkandera arthroconidial anamorph that oxidizes both phenolic and nonphenolic benzyl alcohols. Biochim Biophys Acta 1794:689–697

    Article  CAS  Google Scholar 

  24. Caves MS, Derham BK, Jezek J, Freedman RB (2011) The mechanism of inactivation of glucose oxidase from Penicillium amagasakiense under ambient storage conditions. Enzyme Microb Technol 49:79–87

    Article  CAS  Google Scholar 

  25. Glazunova OA, Shakhova NV, Psurtseva NV, Moiseenko KV, Kleimenov SY, Fedorova TV (2018) White-rot basidiomycetes Junghuhnia nitida and Steccherinum bourdotii: Oxidative potential and laccase properties in comparison with Trametes hirsuta and Coriolopsis caperata. PLoS ONE 13(6):e0197667. https://doi.org/10.1371/journal.pone.0197667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lueangjaroenkit P, Teerapatsakul C, Sakka K, Sakka M, Kimura T, Kunitake E, Chitradon L (2019) Two Manganese Peroxidases and a Laccase of Trametes polyzona KU-RNW027 with Novel Properties for Dye and Pharmaceutical Product Degradation in Redox Mediator-Free System. Mycobiology 47:217–229

    Article  Google Scholar 

  27. Mogilnaya OA, Ronzhin NO, Posokhina ED, Bondar VS (2020) Production of extracellular oxidases in the mycelium of the bioluminescent Neonothopanus nambi (Omphalotaceae, Basidiomycota) grown in submerged culture in different media. Asian J Mycol 3(1):408–418

    Google Scholar 

  28. Vina-Gonzalez J, Elbl K, Ponte X, Valero F, Alcalde M (2018) Functional expression of aryl-alcohol oxidase in Saccharomyces cerevisiae and Pichia pastoris by directed evolution. Biotechnol Bioeng 115:1666–1674

    Article  CAS  Google Scholar 

  29. Tu T, Wang Y, Huang H, Wang Y, Jiang X, Wang Z, Yao B, Luo H (2019) Improving the thermostability and catalytic efficiency of glucose oxidase from Aspergillus niger by molecular evolution. Food Chem 281:163–170

    Article  CAS  Google Scholar 

  30. Ghoshdastider U, Wu R, Trzaskowski B et al (2015) Molecular effects of encapsulation of glucose oxidase dimer by graphene. RSC Adv 5:13570–13578

    Article  CAS  Google Scholar 

  31. Giannakopoulou A, Patila M, Spyrou K et al (2019) Development of a four-enzyme magnetic nanobiocatalyst for multi-step cascade reactions. Catalysts 9:995

    Article  CAS  Google Scholar 

  32. Koenig M, König U, Eichhorn K, Müller M, Stamm M, Uhlmann P (2019) In-situ-investigation of enzyme immobilization on polymer brushes. Front Chem 7:101

    Article  CAS  Google Scholar 

  33. Mogilnaya OA, Ronzhin NO, Bondar VS (2018) Estimating levels of light emission and extracellular peroxidase activity of mycelium of luminous fungus Neonothopanus nambi treated with β-glucosidase. Curr Res Environ Appl Mycol 8:75–85

    Article  Google Scholar 

  34. Mogilnaya OA, Ronzhin NO, Artemenko KS, Bondar VS (2018) Creation of bifunctional indicating complex based on nanodiamonds and extracellular oxidases of luminous fungus Neonothopanus nambi. Dokl Biochem Biophys 480:135–138

    Article  CAS  Google Scholar 

  35. Mogilnaya O, Ronzhin N, Artemenko K, Bondar VS (2019) Nanodiamonds as an effective adsorbent for immobilization of extracellular peroxidases from luminous fungus Neonothopanus nambi to construct a phenol detection system. Biocatal Biotransform 37:97–105

    Article  CAS  Google Scholar 

  36. Mogilnaya OA, Ronzhin NO, Artemenko KS, Posokhina ED, Bondar VS (2020) Extracellular oxidases of basidiomycete Neonothopanus nambi: isolation and some properties. Dokl Biochem Biophys 490:38–42

    Article  Google Scholar 

  37. Kochetov GA (1980) Practical guide to enzymology. Higher School, Moscow ((in Russian))

    Google Scholar 

  38. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  39. Asada Y, Watanabe A, Ohtsu Y, Kuwahara M (1995) Purification and characterization of an aryl-alcohol oxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Biosci Biotechnol Biochem 59:1339–1341

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the state budget allocated to the fundamental research at the Russian Academy of Sciences, Project No. 0356–2019-0022.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions in conceptualizing, drafting, developing and reviewing the manuscript. The paper was reviewed and approved by all authors prior to submission for peer review.

Corresponding author

Correspondence to Olga Mogilnaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogilnaya, O., Ronzhin, N., Posokhina, E. et al. Extracellular Oxidase from the Neonothopanus nambi Fungus as a Promising Enzyme for Analytical Applications. Protein J 40, 731–740 (2021). https://doi.org/10.1007/s10930-021-10010-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-10010-z

Keywords

Navigation