Skip to main content
Log in

Ferronickel Generation from Nickel Sulfide Concentrates by Metallic Iron Addition: Optimization of the Nickel Extraction Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Nickel sulfide concentrates are critical materials for the production of metallic nickel. The disadvantages associated with the conventional nickel extraction process are the considerable amounts of sulfur dioxide emissions in the smelting process and the complex Ni refining steps to produce a marketable product. The authors proposed a novel thermal treatment method for nickel sulfide concentrates with minimal SO2 emissions and have increased the ferronickel particle size through a two-stage heat treatment process. Heating the materials at 1223 K followed by slow cooling to 973 to 1073 K produced large ferronickel particles of d80 = 500 μm and Ni extraction of approximately 97 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Vahed, P.J. Mackey, and A.E.M. Warner: in Ni-Co 2021: The 5th International Symposium on Nickel and Cobalt, C. Anderson, G. Gooddall, S. Gostu, D. Gregurek, and M. Lundström, eds., Springer International Publishing, 2021, pp. 3–39.

  2. 2 F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport: in Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011, pp. 147–58.

    Book  Google Scholar 

  3. 3 D.C. Harris and E.H. Nickel: Can. Mineral., 1972, vol. 11, pp. 861–78.

    CAS  Google Scholar 

  4. 4 F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport: in Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011, pp. 191–8.

    Book  Google Scholar 

  5. 5 F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport: in Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011, pp. 159–70.

    Book  Google Scholar 

  6. 6 F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport: in Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011, pp. 171–89.

    Book  Google Scholar 

  7. 7 G.E. Agar: Int. J. Miner. Process., 1991, vol. 33, pp. 1–19.

    Article  CAS  Google Scholar 

  8. 8 B.D. Ikotun, F. V Adams, and A.G. Ikotun: Part. Sci. Technol., 2017, vol. 35, pp. 462–71.

    Article  CAS  Google Scholar 

  9. 9 A.E.M. Warner, C.M. Díaz, A.D. Dalvi, P.J. Mackey, A. V Tarasov, and R.T. Jones: JOM, 2007, vol. 59, pp. 58–72.

    Article  CAS  Google Scholar 

  10. 10 F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport: in Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011, pp. 233–46.

    Book  Google Scholar 

  11. 11 F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport: in Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011, pp. 247–57.

    Book  Google Scholar 

  12. 12 F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport: in Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011, pp. 215–32.

    Book  Google Scholar 

  13. 13 V.A. Imideev, P. V. Aleksandrov, A.S. Medvedev, O. V. Bazhenova, and A.R. Khanapieva: Metallurgist, 2014, vol. 58, pp. 353–9.

    Article  CAS  Google Scholar 

  14. 14 P. V. Aleksandrov, A.S. Medvedev, V.A. Imideev, and D.O. Moskovskikh: Miner. Eng., 2019, vol. 143, p. 106029.

    Article  CAS  Google Scholar 

  15. 15 G. Li, H. Cheng, S. Chen, X. Lu, Q. Xu, and C. Lu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1136–48.

    Article  Google Scholar 

  16. 16 W. Mu, F. Cui, Z. Huang, Y. Zhai, Q. Xu, and S. Luo: J. Clean. Prod., 2018, vol. 177, pp. 371–7.

    Article  CAS  Google Scholar 

  17. 17 P. V. Aleksandrov, A.S. Medvedev, V.A. Imideev, and D.O. Moskovskikh: Miner. Eng., 2019, vol. 134, pp. 37–53.

    Article  CAS  Google Scholar 

  18. 18 W. Mu, F. Cui, H. Xin, Y. Zhai, and Q. Xu: Hydrometallurgy, 2020, vol. 191, p. 105187.

    Article  CAS  Google Scholar 

  19. 19 D. Yu, T.A. Utigard, and M. Barati: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 653–61.

    Article  Google Scholar 

  20. 20 D. Yu, T.A. Utigard, and M. Barati: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 662–74.

    Article  Google Scholar 

  21. 21 R. Sridhar, A. Dalvi, H.F. Bakker, and A. Illis: Can. Metall. Q., 1976, vol. 15, pp. 255–62.

    Article  CAS  Google Scholar 

  22. 22 F. Liu, D. Yu, S. Marcuson, F. Wang, B. Li, and M. Barati: Miner. Eng., 2019, vol. 134, pp. 206–14.

    Article  CAS  Google Scholar 

  23. 23 D. Yu, F. Liu, J. Zhang, and M. Barati: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2186–96.

    Article  Google Scholar 

  24. 24 F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport: in Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011, pp. 49–53.

    Book  Google Scholar 

  25. O. Polyakov: in Handbook of Ferroalloys Theory and Technology, M. Gasik, ed., Twelfth Ed., Elsevier, Amsterdam, 2013, pp. 367–75.

  26. H.M. Cobb: Steel Products Manual: Stainless Steels, Warrendale, 1999.

  27. 27 F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport: in Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011, pp. 21–37.

    Book  Google Scholar 

  28. 28 D.Q. Zhu, Y. Cui, K. Vining, S. Hapugoda, J. Douglas, J. Pan, and G.L. Zheng: Int. J. Miner. Process., 2012, vol. 106–109, pp. 1–7.

    Google Scholar 

  29. 29 F. Wang, F. Liu, R. Elliott, S. Rezaei, L.T. Khajavi, and M. Barati: J. Alloys Compd., 2020, vol. 822, p. 153582.

    Article  CAS  Google Scholar 

  30. 30 F. Wang, S. Marcuson, L.T. Khajavi, and M. Barati: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2642–52.

    Article  Google Scholar 

  31. 31 C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I. Jung, Y. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M. Van Ende: Calphad Comput. Coupling Phase Diagrams Thermochem., 2016, vol. 54, pp. 35–53.

    Article  CAS  Google Scholar 

  32. 32 K. Hirano, M. Cohen, and B.L. Averbach: Acta Metall., 1961, vol. 9, pp. 440–5.

    Article  CAS  Google Scholar 

  33. 33 T. Ustad and H. Sørum: Phys. Status Solidi, 1973, vol. 20, pp. 285–94.

    Article  CAS  Google Scholar 

  34. 34 R.H. Condit, R.R. Hobbins, and C.E. Birchenall: Oxid. Met., 1974, vol. 8, pp. 409–55.

    Article  CAS  Google Scholar 

  35. 35 D.S. Lauretta: Oxid. Met., 2005, vol. 64, pp. 1–22.

    Article  CAS  Google Scholar 

  36. 36 D. Graham and D.H. Tomlin: Philos. Mag., 1963, vol. 8, pp. 1581–5.

    Article  CAS  Google Scholar 

  37. B. Wills and J. Finch (2016) Wills’ Mineral Processing Technology. Elsevier, Amsterdam, pp. 1–27

    Book  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support from the Natural Science and Engineering Research Council of Canada (NSERC, STPGP 479533-15), Process Research Ortech Inc., and technical support from XPS Consulting & Testwork Services, Glencore and Vale Canada. Fanmao Wang was partially supported by the China Scholarship Council (CSC, No. 201708530245). Sincere thanks to Dr. Abdolkarim Danaei for his help with the experiments. Mr. Richard Elliott and Mr. Feng Liu also provided constructive discussions for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanmao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 30, 2021; accepted May 25, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Marcuson, S., Khajavi, L.T. et al. Ferronickel Generation from Nickel Sulfide Concentrates by Metallic Iron Addition: Optimization of the Nickel Extraction Process. Metall Mater Trans B 52, 3120–3129 (2021). https://doi.org/10.1007/s11663-021-02240-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02240-4

Navigation