Skip to main content

Advertisement

Log in

Modulators of neurolysin: promising agents for the treatment of tumor and neurological diseases

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Neurolysin, a member of the metallopeptidase M3 family, plays an important role in many biological processes by regulating bioactive oligopeptides in the central nervous system and periphery. Small molecule modulators of neurolysin have therapeutic potential in the treatment of schizophrenia, addiction, epilepsy, Huntington, Parkinson’s, and Alzheimer’s diseases, and tumors. In this article, the structure and function of neurolysin and its modulators are reviewed with the aim of providing researchers with perspective and insights toward exploring novel drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Checler F, Ferro ES. Neurolysin: from initial detection to latest advances. Neurochem Res. 2018;43:2017–24.

    Article  CAS  Google Scholar 

  2. Brown CK, Madauss K, Lian W, Beck MR, Tolbert WD, Rodgers DW. Structure of neurolysin reveals a deep channel that limits substrate access. Proc Natl Acad Sci USA. 2001;98:3127–32.

    Article  CAS  Google Scholar 

  3. Norman MU, Lew RA, Smith AI, Hickey MJ, Metalloendopeptidases EC. 3.4.24.15/16 regulate bradykinin activity in the cerebral microvasculature. Am J Physiol Heart Circ Physiol. 2003;284:H1942–8.

    Article  CAS  Google Scholar 

  4. Mentlein R, Dahms P. Endopeptidases 24.16 and 24.15 are responsible for the degradation of somatostatin, neurotensin, and other neuropeptides by cultivated rat cortical astrocytes. J Neurochem. 1994;62:27–36.

    Article  CAS  Google Scholar 

  5. Alan JB. Handbook of proteolytic enzymes. 3d ed. Elsevier Ltd. 2013.

  6. Piliponsky AM, Chen C, Nishimura T, Metz M, Rios EJ, Dobner PR, et al. Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nat Med. 2008;14:392–8.

    Article  CAS  Google Scholar 

  7. Teixeira PF, Masuyer G, Pinho CM, Branca RMM, Kmiec B, Wallin C, et al. Mechanism of peptide binding and cleavage by the human mitochondrial peptidase neurolysin. J Mol Biol. 2018;430:348–62.

    Article  CAS  Google Scholar 

  8. Lian W, Chen G, Wu D, Brown CK, Madauss K, Hersh LB, et al. Crystallization and preliminary analysis of neurolysin. Biol Cryst. 2000;56:1644–6.

    Article  CAS  Google Scholar 

  9. Oliveira V, Araújo MC, Rioli V, de Camargo ACM, Tersariol ILS, Juliano MA, et al. A structure-based site-directed mutagenesis study on the neurolysin (EC 3.4.24.16) and thimet oligopeptidase (EC 3.4.24.15) catalysis. FEBS Lett. 2003;541:89–92.

    Article  CAS  Google Scholar 

  10. Machado MFM, Rioli V, Dalio FM, Castro LM, Juliano MA, Tersariol IL, et al. The role of Tyr605 and Ala607 of thimet oligopeptidase and Tyr606 and Gly608 of neurolysin in substrate hydrolysis and inhibitor binding. Biochem J. 2007;404:279–88.

    Article  CAS  Google Scholar 

  11. Lim EJ, Sampath S, Coll-Rodriguez J, Schmidt J, Ray K, Rodgers DW. Swapping the substrate specificities of the neuropeptidases neurolysin and thimet oiigopeptidase. J Bio Chem. 2007;282:9722–32.

    Article  CAS  Google Scholar 

  12. Hines CS, Ray K, Schmidt JJ, Xiong F, Feenstra RW, Pras-Raves M, et al. Allosteric inhibition of the neuropeptidase neurolysin. J Biol Chem. 2014;289:35605–19.

    Article  CAS  Google Scholar 

  13. Rashid M, Wangler NJ, Yang L, Shah K, Arumugam TV, Abbruscato TJ, et al. Functional up-regulation of endopeptidase neurolysin during post-acute and early recovery phases of experimental stroke in mouse brain. J Neurochem.2014;129:179–89.

    Article  CAS  Google Scholar 

  14. Karamyan VT. Peptidase neurolysin is an endogenous cerebroprotective mechanism in acute neurodegenerative disorders. Med Hypotheses. 2019;131:109309.

    Article  CAS  Google Scholar 

  15. Karamyan V, Trippier P, Ostrov D, Abbruscato T, Jayaraman S. Enhancers of neurolysin activity. WO/2020/047185 (2020).

  16. Jayaraman S, Al Shoyaib A, Kocot J, Villalba H, Alamri FF, Rashid M, et al. Peptidase neurolysin functions to preserve the brain after ischemic stroke in male mice. J Neurochem. 2020;153:120–37.

    Article  CAS  Google Scholar 

  17. Spencer B, Verma I, Desplats P, Morvinski D, Rockenstein E, Adame A, et al. A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates Alzheimer disease pathology and restores neurogenesis. J Biol Chem.2014;289:17917–31.

    Article  CAS  Google Scholar 

  18. Eckman CB, Eckman EA, Watson ML. Degradation of the Alzheimer’s amyloid beta peptide by endothelin converting enzyme. J Neurochem. 2002;276:24540–8.

    Google Scholar 

  19. Leissring MA. The AbetaCs of Abeta-cleaving proteases. J Biol Chem. 2008;283:29645–9.

    Article  CAS  Google Scholar 

  20. Paschoalin T, Carmona AK, Rodrigues EG, Oliveira V, Monteiro HP, Juliano MA, et al. Characterization of thimet oligopeptidase and neurolysin activities in B16F10-Nex2 tumor cells and their involvement in angiogenesis and tumor growth. Mol Cancer. 2007;6:44.

    Article  Google Scholar 

  21. Kadonosono T, Kato M, Ueda M. Metallopeptidase, neurolysin, as a novel molecular tool for analysis of properties of cancer-producing matrix metalloproteinases-2 and -9. Appl Microbiol Biotechnol. 2007;75:1285–91.

    Article  CAS  Google Scholar 

  22. Mirali S, Botham A, Voisin V, Xu C, St-Germain J, Sharon D, et al. The mitochondrial peptidase, neurolysin, regulates respiratory chain supercomplex formation and is necessary for AML viability. Sci Transl Med.2020;12:eaaz8264

    Article  CAS  Google Scholar 

  23. Mirali S, Schimmer AD. Targeting neurolysin in acute myeloid leukemia. Mol Cell Oncol. 2020;7:1761243.

    Article  Google Scholar 

  24. Dauch P, Vincent JP, Checler F. Specific inhibition of endopeptidase 24.16 by dipeptides. Eur J Biochem. 1991;202:269–76.

    Article  CAS  Google Scholar 

  25. Jiracek J, Yiotakis A, Vincent B, Checler F, Dive V. Development of the first potent and selective inhibitor of the zinc endopeptidase neurolysin using a systematic approach based on combinatorial chemistry of phosphinic peptides. J Biol Chem. 1996;271:19606–11.

    Article  CAS  Google Scholar 

  26. Vincent B, Jiracek J, Noble F, Loog M, Roques B, Dive V, et al. Effect of a novel selective and potent phosphinic peptide inhibitor of endopeptidase 3.4.24.16 on neurotensin-induced analgesia and neuronal inactivation. Br J Pharmacol. 1997;121:705–10.

    Article  CAS  Google Scholar 

  27. Bourdel E, Doulut S, Jarretou G, Labbe-Julle C, Fehrentz JA, Doumbia O, et al. New hydroxamate inhibitors of neurotensin-degrading enzymes. Synthesis and active-site recognition. Int J Pept Protein Res. 1996;48:148–55.

    Article  CAS  Google Scholar 

  28. Orlowski M, Michaud C, Molineaux CJ. Substrate-related potent inhibitors of brain metalloendopeptidase. Biochemistry. 1988;27:597–602.

    Article  CAS  Google Scholar 

  29. Steer D, Lew R, Perlmutter P, Smith AI, Aguilar MI. Inhibitors of metalloendopeptidase EC 3.4.24.15 and EC 3.4.24.16 stabilized against proteolysis by the incorporation of beta-amino acids. Biochemistry. 2002;41:10819–26.

    Article  CAS  Google Scholar 

  30. Dalio FM, Machado MFM, Marcondes MF, Juliano MA, Chagas JR, Cunha RLOR, et al. CPP-Ala-Ala-Tyr-PABA inhibitor analogs with improved selectivity for neurolysin or thimet oligopeptidase. Biochem Biophys Res Commun. 2020;522:368–73.

    Article  CAS  Google Scholar 

  31. Barelli H, Dive V, Yiotakis A, Vincent JP, Checler F. Potent inhibition of endopeptidase 24.16 and endopeptidase 24.15 by the phosphonamide peptide N -(phenylethylphosphonyl)-Gly-l-Pro-l-aminohexanoic acid. Biochem J.1992;287:621–5.

    Article  CAS  Google Scholar 

  32. Vincent B, Dive V, Yiotakis A, Smadja C, Maldonado R, Vincent JP, et al. Phosphorus-containing peptides as mixed inhibitors of endopeptidase 3.4.24.15 and 3.4.24.16: effect on neurotensin degradation in vitro and in vivo. Br J Pharmacol. 1995;115:1053–63.

    Article  CAS  Google Scholar 

  33. Stadler M, Hellwig V, Mayer-Bartschmid A, Denzer D, Wiese B, Burkhardt N. Novel analgesic triglycerides from cultures of agaricus macrosporus and other basidiomycetes as selective inhibitors of neurolysin. J Antibiot. 2005;58:775–86.

    Article  CAS  Google Scholar 

  34. Stadler M, Hellwig V, Wiese B, Burkhardt N, Denzer D, Mayer-Bartschmid A, et al. Agaricoglycerides and analogs. WO03055843 (2003).

  35. Drag M, Salvesen GS. Emerging principles in protease-based drug discovery. Nat Rev Drug Discov. 2010;9:690–701.

    Article  CAS  Google Scholar 

  36. Shen A. Allosteric regulation of protease activity by small molecules. Mol Biosyst. 2010;6:1431–43.

    Article  CAS  Google Scholar 

  37. Novinec M, Koren M, Caflisch A, Ranganathan R, Lenarcic B, Baici A, et al. A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods. Nat Commun.2014;5:3287

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Yao, L. Modulators of neurolysin: promising agents for the treatment of tumor and neurological diseases. Med Chem Res 30, 1328–1333 (2021). https://doi.org/10.1007/s00044-021-02761-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02761-2

Keywords

Navigation