Skip to main content
Log in

Development of LabVIEW Program Using SR400 Gated Photon Counter for Continuous Data Acquisition and Analysis

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The photon-counting technique is used where light intensity is extremely low (i.e., in the range of pW to nW) and widely applied in the field of meteorology, space, biotechnology, quantum information, and medical. Various quantum metrology laboratories and research institutes working in the low-intensity light measurement use commercially available SR400 gated photon-counting systems due to their high-count rates (200 MHz) and ability to detect pulses of the order of up to 5 ns. Low-level light detectors (such as photomultiplier tube and avalanche photodiode) generate a discrete pulse output. The manual counting of these pulses from the photon counter is both time-consuming and challenging. This article reports the instrument control LabVIEW program designed to operate the two gates (A and B) of the SR400 gated photon counter. Histogram plot, mean count, standard deviation, and type A uncertainty calculation features are incorporated. This program is useful for photon-counting applications where continuous monitoring and relative variations need to be studied, which is not possible with the standalone SR400.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.A. Morris, R.S. Aspden, J.E. Bell, R.W. Boyd and M.J. Padgett, Imaging with a small number of photons, Nat. Commun., 6 (2015) 1–6. https://doi.org/10.1038/ncomms6913.

    Article  Google Scholar 

  2. M. Lundqvist, B. Cederstrom, V. Chmill, M. Danielsson and B. Hasegawa, Evaluation of a photon-counting x-ray imaging system, IEEE Trans. Nucl. Sci., 48 (2001) 1530–1536. https://doi.org/10.1109/23.958392.

    Article  ADS  Google Scholar 

  3. P.K. Dubey, S.L. Jain, B.C. Arya, Y.N. Ahammed, A. Kumar, D.K. Shukla and P.S. Kulkarni, Indigenous design and development of a micro-pulse lidar for atmospheric studies, Int. J. Remote Sens., 32 (2011) 337–351. https://doi.org/10.1080/01431160903464153.

    Article  ADS  Google Scholar 

  4. M.P. Llobet, A. Gonzalez-Tudela and J.I. Cirac, Multimode fock states with large PHOTON number: effective descriptions and applications in quantum metrology, Quantum Sci. Technol., 5 (2020) 1–22. https://doi.org/10.1088/2058-9565/ab6ce5.

    Article  Google Scholar 

  5. S. Radhakrishnan, B. Arya, C. Sharma, A. Kumar, S. Mishra and D. Shukla, Studies on low altitude clouds over New Delhi, India using lidar, MAPAN-J. Metrol. Soc. India, 31 (2016) 137–144. https://doi.org/10.1007/s12647-016-0166-4.

    Article  Google Scholar 

  6. P.K. Dubey, S.L. Jain, B.C. Arya and P.S. Kulkarni, Depolarization ratio measurement using single PMT in micro pulse lidar, Rev. Sci. Instrum., 80 (2009) 053111.1–053111.6. https://doi.org/10.1063/1.3137934.

    Article  Google Scholar 

  7. R. Ota, Photon counting detectors and their applications ranging from particle physics experiments to environmental radiation monitoring and medical imaging, Radiol. Phys. Technol. (2021). https://doi.org/10.1007/s12194-021-00615-5.

    Article  Google Scholar 

  8. S. Rab, S. Yadav, N. Garg, S. Rajput and D.K. Aswal, Evolution of measurement system and SI units in India, MAPAN-J. Metrol. Soc. India (2020). https://doi.org/10.1007/s12647-020-00400-6.

    Article  Google Scholar 

  9. M.N. Modi, K. Daie, G.C. Turner and K. Podgorski, Two-photon imaging with silicon photomultipliers, Opt. Express, 27 (2019) 35830–35841. https://doi.org/10.1364/OE.27.035830.

    Article  ADS  Google Scholar 

  10. M. Danielsson, M. Persson and M. Sjölin, Photon-counting X-ray detectors for CT, Phys. Med. Biol., 66 (2021) 1–35. https://doi.org/10.1088/1361-6560/abc5a5.

    Article  Google Scholar 

  11. H. Yokota, A. Fukasawa, M. Hirano and T. Ide, Low-light photodetectors for fluorescence microscopy, Appl. Sci., 11 (2021) 1–20. https://doi.org/10.3390/app11062773.

    Article  Google Scholar 

  12. C. Candan, M. Tiken, H. Berberoglu, E. Orhan and A. Yeniay, Experimental study on km-range long-distance measurement using silicon photomultiplier sensor with low peak power laser pulse, Appl. Sci., 11 (2021) 1–13. https://doi.org/10.3390/app11010403.

    Article  Google Scholar 

  13. M. Caccia, L. Nardo, R. Santoro and D. Schaffhauser, Silicon photomultipliers and SPAD imagers in biophotonics: advances and perspectives, Nucl. Inst. Methods Phys. Res. A, 926 (2019) 101–117. https://doi.org/10.1016/j.nima.2018.10.204.

    Article  ADS  Google Scholar 

  14. G. Ortolano, E. Losero, S. Pirandola, M. Genovese and I. Ruo-Berchera, Experimental quantum reading with photon counting, Sci. Adv., 7 (2021) 1–7. https://doi.org/10.1126/sciadv.abc7796.

    Article  Google Scholar 

  15. M. Cea, E.E. Wollman, A.H. Atabaki, D.J. Gray, M.D. Shaw and R.J. Ram, Photonic readout of superconducting nanowire single photon counting detectors, Sci Rep., 10 (2020) 1–8. https://doi.org/10.1038/s41598-020-65971-5.

    Article  Google Scholar 

  16. M.S. Bashir and M.-S. Alouini, Signal acquisition with photon-counting detector arrays in free-space optical communications, IEEE Trans. Wirel. Commun., 19 (2020) 2181–2195. https://doi.org/10.1109/TWC.2019.2962670.

    Article  Google Scholar 

  17. L. Dai, J. Liu, K. Liang, R. Yang, D. Han and B. Lu, Realization of a time-correlated photon counting technique for fluorescence analysis, Biomed. Opt. Express, 11 (2020) 2205–2212. https://doi.org/10.1364/BOE.385870.

    Article  Google Scholar 

  18. M. Patel, A. Sakaamini, M. Harvey and A.J. Murray, An experimental control system for electron spectrometers using arduino and LabVIEW Interfaces, Rev. Sci. Instrum., 10 (2020) 103104. https://doi.org/10.1063/5.0021229.

    Article  ADS  Google Scholar 

  19. C. Elliott, V. Vijayakumar, W. Zink and R. Hansen, National Instruments LabVIEW: a programming environment for laboratory automation and measurement, JALA, 12 (2007) 17–24.

    Google Scholar 

  20. K.S. Satish and S. Anand, Demonstration of microstrip sensor for the feasibility study of non-invasive blood-glucose sensing, MAPAN-J. Metrol. Soc. India (2020). https://doi.org/10.1007/s12647-020-00396-z.

    Article  Google Scholar 

  21. Y. Xu, Y. Du, Z. Li, L. Xi and Y. Liu, Harmonic parameter online estimation in power system based on Hann self-convolving window and equidistant two-point interpolated Dft, MAPAN-J. Metrol. Soc. India, 35 (2020) 69–79. https://doi.org/10.1007/s12647-019-00344-6.

    Article  Google Scholar 

  22. R. Singh and K.S. Nagla, Removal of specular reflection and cross talk in sonar for precise and accurate range measurements, MAPAN-J. Metrol. Soc. India, 34 (2019) 31–42. https://doi.org/10.1007/s12647-018-0282-4.

    Article  Google Scholar 

  23. A. Acharya, P. Arora, S. Yadav and A. Sen Gupta, Detection, acquisition and processing of fluorescence from cold atoms in cesium fountain primary frequency standard at Npl, India, MAPAN-J. Metrol. Soc. India, 35 (2020) 521–530. https://doi.org/10.1007/s12647-020-00405-1.

    Article  Google Scholar 

  24. D. Joshi, R. Gupta, A. Kumar, Y. Kumar and S. Yadav, A precision ultrasonic phase velocity measurement technique for liquids, MAPAN-J Metrol. Soc. India, 29 (2014) 9–17. https://doi.org/10.1007/s12647-013-0088-3.

    Article  Google Scholar 

  25. P.K. Dubey, A. Jain and S. Singh, Improved and automated primary ultrasonic power measurement setup at Csir-Npl, India, MAPAN-J. Metrol. Soc. India, 30 (2015) 231–237. https://doi.org/10.1007/s12647-015-0150-4.

    Article  Google Scholar 

  26. R. Singh and K.S. Nagla, Sonar sensor model for the precision measurement to generate robust occupancy grid map MAPAN-J. Metrol. Soc. India, 34 (2019) 239–257. https://doi.org/10.1007/s12647-018-0289-x.

    Article  Google Scholar 

  27. H. Yang, G. Zheng, R.F. Zhang, F.L. Yu and D.Q. Blan, Dynamic light scattering system based on photon counting developed by LabVIEW, Acta Photon. Sin., 36 (2007) 170–173.

    Google Scholar 

  28. R.K. Kapri, P. Sharma and P.K. Dubey, Indigenous design and development of gated photon counter for low-rate photon regime, MAPAN-J. Metrol. Soc. India, 36 (2021) 59–66. https://doi.org/10.1007/s12647-021-00434-4.

    Article  Google Scholar 

  29. B.A. Rodrigues Filho, R.F. Farias and W.E. dos Anjos, An automated calibration system for blood pressure measurement traceability, MAPAN-J. Metrol. Soc. India, 35 (2020) 43–51. https://doi.org/10.1007/s12647-019-00329-5.

    Article  Google Scholar 

  30. D. Joshi, R. Sandeep Kumar, S. Yadav and A. Kumar, Development of an improved acoustic dispersion measurement technique in liquids, MAPAN-J. Metrol. Soc. India, 30 (2015) 15–23. https://doi.org/10.1007/s12647-014-0108-y.

    Article  Google Scholar 

  31. A. Akkaya and E. Ayyıldız, Automation software for semiconductor research laboratories: measurement system and instrument control program (Seclas-Ic), MAPAN-J. Metrol. Soc. India, 35 (2020) 343–350. https://doi.org/10.1007/s12647-02000381-6.

    Article  Google Scholar 

  32. S.K. Dubey, N. Narang, P.S. Negi and V. NnOjha, Labview based automation guide for microwave measurements, Springer, Berlin, (2017).

    Google Scholar 

  33. A. Acharya, V. Bharath, P. Arora, S. Yadav, A. Agarwal and A.S. Gupta, Systematic uncertainty evaluation of the cesium fountain primary frequency standard at Npl India, MAPAN-J Metrol. Soc. India, 32 (2017) 67–76. https://doi.org/10.1007/s12647-016-0190-4.

    Article  Google Scholar 

  34. J. Travis, LabVIEW for everyone, Pearson Education, India, (2009).

    Google Scholar 

  35. D.J. Kim and Z. Fisk, A Labview based template for user created experiment automation, Rev. Sci. Instrum., 83 (2012) 123705.1–123705.9. https://doi.org/10.1063/1.4770121.

    Article  Google Scholar 

  36. P. Ferrand, GPScan. Vi: a general-purpose Labview program for scanning imaging or any application requiring synchronous analog voltage generation and data acquisition, Comput. Phys. Commun., 192 (2015) 342–347. https://doi.org/10.1016/j.cpc.2015.03.010.

    Article  ADS  Google Scholar 

  37. M. Mahmoodi, L.A. James and T. Johansen, Automated advanced image processing for micromodel flow experiments; an application using Labview, J. Pet. Sci. Eng., 167 (2018) 829–843. https://doi.org/10.1016/j.petrol.2018.02.031.

    Article  Google Scholar 

  38. P. Li, L. Nie, Remote control laboratory based on Labview, in 2009 Second International conference on intelligent computation technology and automation IEEE, 4 (2009) 84–87. https://doi.org/10.1109/ICICTA.2009.737.

  39. M. Benghanem, Measurement of meteorological data based on wireless data acquisition system monitoring, Appl. Energy, 86 (2009) 2651–2660. https://doi.org/10.1016/j.apenergy.2009.03.026.

    Article  Google Scholar 

  40. I.W. Kirkman and P.A. Buksh, Data acquisition and control using national instruments ‘“LabVIEW”’ software. Rev. Sci. Instrum., 63 (1992) 869–872.

    Article  ADS  Google Scholar 

  41. L. Lydersen, M.K. Akhlaghi, A.H. Majedi, J. Skaar and V. Makarov, Controlling a superconducting nanowire single-photon detector using tailored bright illumination, New J. Phys., 13 (2011) 1–14. https://doi.org/10.1088/1367-2630/13/11/113042.

    Article  Google Scholar 

  42. L. Gautam, A.G. Jaud, J. Lee, G.J. Brown and M. Razeghi, Geiger-mode operation of AlGaN avalanche photodiodes at 255 nm, IEEE J. Quantum Electron., 57 (2021) 1–6. https://doi.org/10.1109/JQE.2020.3048701.

    Article  Google Scholar 

  43. R.K. Kapri, K. Rathore, R. Mehrotra, V.K. Jaiswal, P.K. Dubey, and P. Sharma, Impact of discriminator threshold and PMT gain on photon counts, in International conference on optics and electro-optics (ICOL 2019), IRDE, Dehradun, India, October 19th–22nd, (2019). https://doi.org/10.1007/978-981-15-9259-1_134.

  44. D. Branning, S. Bhandari and M. Beck, Low-cost coincidence-counting electronics for undergraduate quantum optics, Am. J. Phys., 77 (2009) 667–670. https://doi.org/10.1119/1.3116803.

    Article  ADS  Google Scholar 

  45. See www.thinkSRS.com for SR400 datasheet.

  46. P.K. Dubey, S.L. Jain, B.C. Arya and P.S. Kulkarni, Discriminator threshold selection logic to improve signal to noise ratio in photon counting, MAPAN-J. Metrol. Soc. India, 25 (2010) 63–70. https://doi.org/10.1007/s12647-010-0002-1.

    Article  Google Scholar 

  47. Z. Zhang, Y. Ma, S. Li, P. Zhao, Y. Xiang, X. Liu and W. Zhang, Ranging performance model considering the pulse pileup effect for PMT-based photon-counting lidars, Opt. Express, 28 (2020) 13586–13600. https://doi.org/10.1364/OE.386107.

    Article  ADS  Google Scholar 

  48. C.A. García-Cadena, A.d.J. Aguilar-Uribe and L.F. Rojas-Ochoa, PhotonSTR-18: A LabVIEW toolbox for photon correlation spectroscopy, SoftwareX, 13 (2021) 100640_1–100640_9. https://doi.org/10.1016/j.softx.2020.100640.

  49. G.K. Kitaeva, A. Leontyev, and P. Prudkovskii, Quantum correlation between optical and terahertz photons generated under multimode spontaneous parametric down-conversion, Phys. Rev. A, 101 (2020) 053810–1_053810–13. https://doi.org/10.1103/PhysRevA.101.053810.

  50. R.K. Kapri, K. Rathore, P.K. Dubey, R. Mehrotra, and P. Sharma, Optimization of control parameters of PMT-based photon counting system, MAPAN-J. Metrol. Soc. India, 35 (2020) 177–182. https://doi.org/10.1007/s12647-019-00357-1.

  51. J. Xia, S. Qian, W. Wang, Z. Ning, Y. Cheng, Z. Wang, X. Li, M. Qi, Y. Heng and S. Liu, A performance evaluation system for photomultiplier tubes, JINST, 10 (2015) 1–14. https://doi.org/10.1088/1748-0221/10/03/P03023.

    Article  Google Scholar 

  52. L. Ma, J. Xia, S. Qian, F. Gao, G. Huang, Q. Wu, J. Sun, L. Ren, S. Si and Y. Zhu, Study on the relative collection efficiency of large area PMTs. JINST (2021). https://doi.org/10.1088/1748-0221/16/05/T05007.

  53. C. Mollo, C. Bozza, T. Chiarusi, M. Costa, F. Di Capua, V. Kulikovskiy, R. Mele, P. Migliozzi, C. Pellegrino and G. Riccoben, A new instrument for high statistics measurement of photomultiplier characteristics, JINST, 11 (2016) 1–14. https://doi.org/10.1088/1748-0221/11/08/T08002.

    Article  Google Scholar 

  54. S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov and C. Sitarsky, Efficiency of solid state photomultipliers in photon number resolution, IEEE Trans. Nucl. Sci., 58 (2011) 9–16. https://doi.org/10.1109/TNS.2010.2096474.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director, CSIR-National Physical Laboratory, for providing the necessary facilities to carry out the above work. One of the authors, Mr. Rashtrapriya Kumar Kapri, is also thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for providing the fellowship under the CSIR-SRF scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashtrapriya Kumar Kapri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1333 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapri, R.K., Dwivedi, R., Dubey, P.K. et al. Development of LabVIEW Program Using SR400 Gated Photon Counter for Continuous Data Acquisition and Analysis. MAPAN 36, 443–449 (2021). https://doi.org/10.1007/s12647-021-00487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00487-5

Keywords

Navigation