Skip to main content
Log in

Bound state solutions of fractional Choquard equation with Hardy–Littlewood–Sobolev critical exponent

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the following nonlinear Choquard equation

$$\begin{aligned} (-\Delta )^{s}u+V(x)u=(I_{\alpha }*|u|^{2^{*}_{\alpha ,s}})|u|^{2^{*}_{\alpha ,s}-2}u, \quad u\in \mathcal {D}^{s,2}(\mathbb {R}^N), \end{aligned}$$
(0.1)

where \(s\in (0,1)\), \(N>2s\), \(0<\alpha <N\) and \(2^{*}_{\alpha ,s}=\frac{N+\alpha }{N-2s}\) is the critical exponent in the sense of Hardy–Littlewood–Sobolev inequality. We showed that Eq. (0.1) has at least one bound state solution if \(\Vert V(x)\Vert _{L^{\frac{N}{2s}}}\) is suitably small, by proving a version to the Fractional operator in \(\mathbb {R}^N\) of the Global Compactness result due to Struwe (see Struwe 1984)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Alves CO, Nóbrega AB, Yang M (2016) Multi-bump solutions for Choquard equation with deepening potential well. Calc Var Partial Differ Equ 55:28

    Article  MathSciNet  Google Scholar 

  • Alves CO, Gao F, Squassina M, Yang M (2017) Singularly perturbed critical Choquard equations. J Differ Equ 263:3943–3988

    Article  MathSciNet  Google Scholar 

  • Alves CO, Barros L, Torres CL (2021) Existence of solution for a class of variational inequality in whole \({\mathbb{R}}^N\) with critical growth. J Math Anal Appl 494:124672

    Article  MathSciNet  Google Scholar 

  • Applebaum D (2004) Lévy processes—from probability to finance and quantum groups. Not Am Math Soc 51:1336–1347

    MathSciNet  MATH  Google Scholar 

  • Benci V, Cerami G (1990) Existence of positive solution of the equation \(-\Delta u+a(x)u=u^{\frac{N+2}{N-2}}\) in \({\mathbb{R}}^N\). J Funct Anal 88:90–117

    Article  MathSciNet  Google Scholar 

  • Bonder JF, Saintier N, Silva A (2018) The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis-Nirenberg problem. NoDEA Nonlinear Diff Equ Appl 25:25

    Article  MathSciNet  Google Scholar 

  • Buffoni B, Jeanjean L, Stuart CA (1993) Existence of a nontrivial solution to a strongly indefinite semilinear equation. Proc Am Math Soc 119:179–186

    Article  MathSciNet  Google Scholar 

  • Cho Y, Hwang G, Kwon S, Lee S (2012) Profile decompositions and Blowup phenomena of mass critical fractional Schr\(\ddot{\rm o}\)dinger equations. Nonlinear Anal 86:12–29

    Article  Google Scholar 

  • Correia JN, Figueiredo GM (2019) Existence of positive solution of the equation \((-\Delta )^{s}u+a(x)u=|u|^{2^{\ast }_{s}-2}u\). Calc Var Partial Differ Equ 58:39

    Article  Google Scholar 

  • D’Avenia P, Gaetano S, Marco S (2015) On fractional Choquard equations. Math Models Methods Appl Sci 25:1447–1476

  • Di Nezza E, Palatucci G, Valdinoci E (2012) Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math 136:521–573

  • Du L, Yang M (2019) Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discrete Contin Dyn Syst A 39(10):5847–5866

    Article  MathSciNet  Google Scholar 

  • Frank RL, Lenzmann E (2009) On ground states for the \(L^2\)-critical boson star equation. Eprint Arxiv, arXiv:0910.2721v2

  • Gao F, Yang M (2018) A strongly indefinite Choquard equation with critical exponent due to the Hardy–Littlewood–Sobolev inequality. Commun Contemp Math 20(04):1750037

    Article  MathSciNet  Google Scholar 

  • Gao F, Yang M (2018) On the Brezis–Nirenberg type critical problem for nonlinear Choquard equation. Sci China Math 61:1219–1242

    Article  MathSciNet  Google Scholar 

  • Gao F, da Silva ED, Yang M, Zhou J (2020) Existence of solutions for critical Choquard equations via the concentration compactness method. Proc R Soc Edinb Sect A 150:921–954

    Article  MathSciNet  Google Scholar 

  • Garroni A, M\(\ddot{\rm u}\)ller S (2005) \(\Gamma \)-limit of a phase-field model of dislocations. SIAM J Math Anal 36:1943–1964

  • Guo L, Hu T (2017) Existence and asymptotic behavior of the least energy solutions for fractional Choquard equations with potential well. Math Methods App Sci 41(3):1145–1161

    Article  MathSciNet  Google Scholar 

  • Guo L, Hu TX, Peng S, Shuai W (2019) Existence and uniqueness of solutions for Choquard equation involving Hardy–Littlewood–Sobolev critical exponent. Calc Var Partial Differ Equ 58:34

    Article  MathSciNet  Google Scholar 

  • Herr S, Lenzmann E (2013) The Boson star equation with initial data of low regularity. Nonlinear Anal 97:125–137

    Article  MathSciNet  Google Scholar 

  • Le P (2019) Liouville theorem and classification of positive solutions for a fractional Choquard type equation. Nonlinear Anal 185:123–141

    Article  MathSciNet  Google Scholar 

  • Le P (2020) On classical solutions to the Hartree equation. J Math Anal Appl 485:123859

  • Lieb EH (1983) Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann Math (2) 118:349–374

    Article  MathSciNet  Google Scholar 

  • Moroz V, Van Schaftingen J (2013) Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J Funct Anal 265:153–184

    Article  MathSciNet  Google Scholar 

  • Moroz V, Van Schaftingen J (2015) Existence of groundstates for a class of nonlinear Choquard equations. Trans Am Math Soc 367:6557–6579

    Article  MathSciNet  Google Scholar 

  • Mukherjee T, Sreenadh K (2017) Fractional Choquard equation with critical nonlinearities. NoDEA Nonlinear Differ Equ Appl 24:34

    Article  MathSciNet  Google Scholar 

  • Pekar S (1954) Untersuchung \(\ddot{\rm u}\)ber die Elektronentheorie der Kristalle. Akademie Verlag, Berlin

    Google Scholar 

  • Riesz M (1949) L’int\(\acute{\rm e}\)grale de Riemann–Liouville et le probl\(\grave{\rm e}\)me de Cauchy. Acta Math 81:1–223

  • Shen Z, Gao F, Yang M (2015) Ground states for nonlinear fractional Choquard equations with general nonlinearities. Math Methods Appl Sci 39:4082–4098

    Article  MathSciNet  Google Scholar 

  • Shen Z, Gao F, Yang M (2018) On critical Choquard equation with potential well. Discrete Contin Dyn Syst A 38(7):3669–3695

    Article  MathSciNet  Google Scholar 

  • Silvestre L (2007) Regularity of the obstacle problem for a fractional power to the Laplace operator. Commun Pure Appl Math 60:67–112

    Article  MathSciNet  Google Scholar 

  • Sousa JVC, Zuo JB, O’Regan D (2021) The Nehari manifold for a \(\psi \)-Hilfer fractional p-Laplacian. Appl Anal. https://doi.org/10.1080/00036811.2021.1880569

  • Struwe M (1984) A global compactness result for elliptic boundary value problems involving limiting nonliarities. Math Z 187:511–517

    Article  MathSciNet  Google Scholar 

  • Willem M (1996) Minimax theorems. Birkh\(\ddot{\rm a}\)user, Basel

Download references

Acknowledgements

The author would like to thank Professor Yinbin Deng very much for stimulating discussions and helpful suggestions on the present paper. The research of X. L. Yang was supported by the graduate education innovation funding [Grant number 2019CXZZ082] from Central China Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Yang.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X. Bound state solutions of fractional Choquard equation with Hardy–Littlewood–Sobolev critical exponent. Comp. Appl. Math. 40, 171 (2021). https://doi.org/10.1007/s40314-021-01559-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01559-7

Keywords

Mathematics Subject Classification

Navigation