Skip to main content

Advertisement

Log in

CLOISITE 10A AS AN EFFECTIVE ANTIBACTERIAL AGENT IN POLYMER MATRICES: ROLE OF NANOSCALE ROUGHNESS AND INTERFACIAL INTERACTIONS

  • Published:
Clays and Clay Minerals

Abstract

Polymer–filler interactions play a major role in determining the antibacterial activity of organoclay in nanocomposites. The objective of the current study was to determine the effect of polymer type on the antibacterial properties of an organically modified clay – cloisite 10A (C10A) – using poly-ε-caprolactone (PCL) and poly-L-lactic acid (PLA) polymeric systems. Nanocomposite characterization using atomic force microscopy (AFM) showed an increase in roughness upon addition of the clay mineral, and X-ray diffraction (XRD) showed intercalation of the selected polymers into the interlayer spaces of the clay. Transmission electron microscopy (TEM) analysis supported the XRD findings. C10A in PCL thin films enhanced the bactericidal activity against Staphylococcus aureus when compared to the C10A in PLA. The observed change could be the result of pronounced levels of interaction between the filler and polymer matrix in the C10A-PLA nanocomposite when compared to C10A-PCL. The higher interaction levels could hinder the diffusion of bactericidal agents from the nanocomposite membranes. The present study provided insight into the nature of interaction between nanocomposite components and its impact on bioactivity, which can have applications in terms of generating engineered antibacterial materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal, B. B., Surh, Y.-J., & Shishodia, S. (Eds.). (2007). The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Berlin: Advances in Experimental Medicine and Biology. Springer, Berlin.

  • Babu, S. S., Augustine, A., Kalarikkal, N., & Thomas, S. (2016a). Nylon 6, 12/Cloisite 30B electrospun nanocomposites for dental applications. Journal of Siberian Federal University. Biology, 9, 198.

    Article  Google Scholar 

  • Babu, S. S., Mathew, S., Kalarikkal, N., & Thomas, S. (2016b). Antimicrobial, antibiofilm, and microbial barrier properties of poly (ε-caprolactone)/cloisite 30B thin films. 3 Biotech, 6, 249.

  • Babu, S. S., Kalarikkal, N., Thomas, S., & Radhakrishnan, E. (2018). Enhanced antimicrobial performance of cloisite 30B/poly (ε-caprolactone) over cloisite 30B/poly (L-lactic acid) as evidenced by structural features. Applied Clay Science, 153, 198–204.

    Article  Google Scholar 

  • Beyth, N., Yudovin-Farber, I., Bahir, R., Domb, A. J., & Weiss, E. I. (2006). Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials, 27, 3995–4002.

    Article  Google Scholar 

  • Bower, C. (1949). Studies on the form and availability of organic soil phosphorous. IOWA Agriculture Experiment Station Research Bulletin, 362–339.

  • Casapao, A. M., Davis, S. L., Barr, V. O., Klinker, K. P., Goff, D. A., Barber, K. E., & 5 others. (2014). Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy. Antimicrobial Agents and Chemotherapy, 58, 2541–2546.

    Article  Google Scholar 

  • Chandran, N., Chandran, S., Maria, H. J., & Thomas, S. (2015). Compatibilizing action and localization of clay in a polypropylene/natural rubber (PP/NR) blend. RSC Advances, 5, 86265–86273. https://doi.org/10.1039/c5ra14352g

    Article  Google Scholar 

  • Chávez-Montes, W. M., González-Sánchez, G., & Flores-Gallardo, S. G. (2016). Poly-lactide/exfoliated C30B interactions and influence on thermo-mechanical properties due to artificial weathering. Polymers, 8, 154.

    Article  Google Scholar 

  • Chen, B. (2004). Polymer–clay nanocomposites: an overview with emphasis on interaction mechanisms. British Ceramic Transactions, 103, 241–249.

    Article  Google Scholar 

  • Cheng, Z., & Teoh, S. H. (2004). Surface modification of ultra thin poly (ε-caprolactone) films using acrylic acid and collagen. Biomaterials, 25, 1991–2001. https://doi.org/10.1016/j.biomaterials.2003.08.038

    Article  Google Scholar 

  • Das, K., Ray, D., & Banerjee, I. (2010). Crystalline morphology of PLA/clay nanocomposite films and its correlation with other properties. Journal of Applied Polymer Science, 118, 143–151. https://doi.org/10.1002/app.32345

    Article  Google Scholar 

  • Davis, J. S., Sud, A., O’Sullivan, M. V., Robinson, J. O., Ferguson, P. E., & Foo, H., et al. (2015). Combination of vancomycin and β-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clinical Infectious Diseases, 62, 173–180.

    Article  Google Scholar 

  • Dottori, M., Armentano, I., Fortunati, E., & Kenny, J. (2011). Production and properties of solvent-cast poly (ε-caprolactone) composites with carbon nanostructures. Journal of Applied Polymer Science, 119, 3544–3552.

    Article  Google Scholar 

  • Elias, E., Chandran, N., Souza, F. G., & Thomas, S. (2016). Segmental dynamics, morphology and thermomechanical properties of electrospun poly (ε-caprolactone) nanofibers in the presence of an interacting filler. RSC Advances, 6, 21376–21386.

    Article  Google Scholar 

  • Giannakas, A., Vlacha, M., Salmas, C., Leontiou, A., Katapodis, P., Stamatis, H., Barkoula, N.-M., & Ladavos, A. (2016). Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydrate Polymers, 140, 408–415.

    Article  Google Scholar 

  • Harkins, C. P., Pichon, B., Doumith, M., Parkhill, J., Westh, H., Tomasz, A., & 4 others. (2017). Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biology, 18, 130.

    Article  Google Scholar 

  • Hong, S.-I., & Rhim, J.-W. (2008). Antimicrobial activity of organically modified nano-clays. Journal of Nanoscience and Nanotechnology, 8, 5818–5824.

    Article  Google Scholar 

  • Islam, M. S., Azmee, N., Ashaari, Z., AdibAiman, A., Rasyid, A., & Islam, K. H. N. (2017) Properties of wood polymer nanocomposites impregnated with ST-co-EDA/Nanoclay. Macromolecular Symposia, 371, 125–128. Wiley Online Library.

  • Kim, I. Y., Park, S., Kim, H., Park, S., Ruoff, R. S., & Hwang, S. J. (2014). Strongly-coupled freestanding hybrid films of graphene and layered titanate nanosheets: An effective way to tailor the physicochemical and antibacterial properties of graphene film. Advanced Functional Materials, 24, 2288–2294.

    Article  Google Scholar 

  • Kim, I. Y., Lee, J. M., Hwang, E.-H., Pei, Y.-R., Jin, W.-B., Choy, J.-H., & Hwang, S.-J. (2016). Water-floating nanohybrid films of layered titanate–graphene for sanitization of algae without secondary pollution. RSC Advances, 6, 98528–98535.

    Article  Google Scholar 

  • Kinnari, T. J., Peltonen, L. I., Kuusela, P., Kivilahti, J., Könönen, M., & Jero, J. (2005). Bacterial adherence to titanium surface coated with human serum albumin. Otology & Neurotology, 26, 380–384.

    Article  Google Scholar 

  • Kornmann, X., Lindberg, H., & Berglund, L. A. (2001). Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure. Polymer, 42, 1303–1310.

    Article  Google Scholar 

  • Li, Q., Yoon, J.-S., & Chen, G.-X. (2011). Thermal and biodegradable properties of poly(l-lactide)/poly(ε-caprolactone) compounded with functionalized organoclay. Journal of Polymers and the Environment, 19, 59–68. https://doi.org/10.1007/s10924-010-0256-2

    Article  Google Scholar 

  • Luo, J.-J., & Daniel, I. M. (2003). Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Composites Science and Technology, 63, 1607–1616.

    Article  Google Scholar 

  • Manias, E., Touny, A., Wu, L., Strawhecker, K., Lu, B., & Chung, T. (2001). Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chemistry of Materials, 13, 3516–3523.

    Article  Google Scholar 

  • Marras, S. I., Kladi, K. P., Tsivintzelis, I., Zuburtikudis, I., & Panayiotou, C. (2008). Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomaterialia, 4, 756–765. https://doi.org/10.1016/j.actbio.2007.12.005

    Article  Google Scholar 

  • Maryan, A. S., & Montazer, M. (2015). Natural and organo-montmorillonite as antibacterial nanoclays for cotton garment. Journal of Industrial and Engineering Chemistry, 22, 164–170.

    Article  Google Scholar 

  • Mehrotra, V. & Giannelis, E. (1989). Conducting molecular multilayers: intercalation of conjugated polymers in layered media. MRS Online Proceedings Library Archive, 171.

  • Merah, N. & Mohamed, O. (2019). Nanoclay and water uptake effects on mechanical properties of unsaturated polyester. Journal of Nanomaterials, article 8130419.

  • Nam, J. Y., Sinha Ray, S., & Okamoto, M. (2003). Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules, 36, 7126–7131.

    Article  Google Scholar 

  • Nguyen, Q. T., & Baird, D. G. (2006). Preparation of polymer–clay nanocomposites and their properties. Advances in Polymer Technology, 25, 270–285. https://doi.org/10.1002/adv.20079

    Article  Google Scholar 

  • Ning, N., Fu, S., Zhang, W., Chen, F., Wang, K., Deng, H., Zhang, Q., & Fu, Q. (2012). Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Progress in Polymer Science, 37, 1425–1455.

    Article  Google Scholar 

  • Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33, 1119–1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008

    Article  Google Scholar 

  • Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83.

    Article  Google Scholar 

  • Rhim, J.-W., Hong, S.-I., & Ha, C.-S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Science and Technology, 42, 612–617.

    Article  Google Scholar 

  • Rodríguez-Tobías, H., Morales, G., & Grande, D. (2016). Improvement of mechanical properties and antibacterial activity of electrospun poly (D, L-lactide)-based mats by incorporation of ZnO-graft-poly (D, L-lactide) nanoparticles. Materials Chemistry and Physics, 182, 324–331.

    Article  Google Scholar 

  • Sorrentino, A., Tortora, M., & Vittoria, V. (2006). Diffusion behavior in polymer–clay nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 44, 265–274.

    Article  Google Scholar 

  • Sun, Z., Fan, C., Tang, X., Zhao, J., Song, Y., Shao, Z., & Xu, L. (2016). Characterization and antibacterial properties of porous fibers containing silver ions. Applied Surface Science, 387, 828–838.

    Article  Google Scholar 

  • Thomas, R., Soumya, K., Mathew, J., & Radhakrishnan, E. (2015). Electrospun polycaprolactone membrane incorporated with biosynthesized silver nanoparticles as effective wound dressing material. Applied Biochemistry and Biotechnology, 176, 2213–2224.

    Article  Google Scholar 

  • Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P., Carugati, M., Holland, T. L., & Fowler, V. G., Jr. (2019). Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology, 17, 203–218.

    Article  Google Scholar 

  • Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Synthesis of nylon 6-clay hybrid. Journal of Materials Research, 8, 1179–1184.

    Article  Google Scholar 

  • Usuki, A., Koiwai, A., Kojima, Y., Kawasumi, M., Okada, A., Kurauchi, T., & Kamigaito, O. (1995). Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid. Journal of Applied Polymer Science, 55, 119–123.

    Article  Google Scholar 

  • Vaia, R. A., Ishii, H., & Giannelis, E. P. (1993). Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chemistry of Materials, 5, 1694–1696.

    Article  Google Scholar 

  • Yudovin-Farber, I., Golenser, J., Beyth, N., Weiss, E. I., & Domb, A. J. (2010). Quaternary ammonium polyethyleneimine: antibacterial activity. Journal of Nanomaterials. https://doi.org/10.1155/2010/826343

    Article  Google Scholar 

  • Zanetti, M., Lomakin, S., & Camino, G. (2000). Polymer layered silicate nanocomposites. Macromolecular Materials and Engineering, 279, 1–9.

    Article  Google Scholar 

  • Zheng, Y., Li, J., Liu, X., & Sun, J. (2012). Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. International Journal of Nanomedicine, 7, 875.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the facilities provided by the Department of Science and Technology of NANOMISSION (DST-Nanomission) and for the instrument facilities at the International and Inter-University Centre for Nanoscience and Nanotechnology, School of Chemical Sciences, School of Pure and Applied Physics, and School of Biosciences at the Mahatma Gandhi University, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Radhakrishnan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

(Received 2 November 2019; revised 9 March 2021; AE: Jin-Ho Choy)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snigdha, S., Nandakumar, K., Sabu, T. et al. CLOISITE 10A AS AN EFFECTIVE ANTIBACTERIAL AGENT IN POLYMER MATRICES: ROLE OF NANOSCALE ROUGHNESS AND INTERFACIAL INTERACTIONS. Clays Clay Miner. 69, 289–298 (2021). https://doi.org/10.1007/s42860-021-00122-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-021-00122-z

Keywords

Navigation