Skip to main content

Advertisement

Log in

LPCANet: Classification of Laryngeal Cancer Histopathological Images Using a CNN with Position Attention and Channel Attention Mechanisms

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Laryngeal cancer is one of the most common malignant tumors in otolaryngology, and histopathological image analysis is the gold standard for the diagnosis of laryngeal cancer. However, pathologists have high subjectivity in their diagnoses, which makes it easy to miss diagnoses and misdiagnose. In addition, according to a literature search, there is currently no computer-aided diagnosis (CAD) algorithm that has been applied to the classification of histopathological images of laryngeal cancer. Convolutional neural networks (CNNs) are widely used in various other cancer classification tasks. However, the potential global and channel relationships of images may be ignored, which will affect the feature representation ability. Simultaneously, due to the lack of interpretability, the results are often difficult to accept by pathologists. we propose a laryngeal cancer classification network (LPCANet) based on a CNN and attention mechanisms. First, the original histopathological images are sequentially cropped into patches. Then, the patches are input into the basic ResNet50 to extract the local features. Then, a position attention module and a channel attention module are added in parallel to capture the spatial dependency and the channel dependency, respectively. The two modules produce the fusion feature map to enhance the feature representation and improve network classification performance. Moreover, the fusion feature map is extracted and visually analyzed by the grad-weighted class activation map (Grad_CAM) to provide a certain interpretability for the final results. The three-class classification performance of LPCANet is better than those of the five state-of-the-art classifiers (VGG16, ResNet50, InceptionV3, Xception and DenseNet121) on the two original resolutions (534 * 400 and 1067 * 800). On the 534 * 400 data, LPCANet achieved 73.18% accuracy, 74.04% precision, 73.15% recall, 72.9% F1-score, and 0.8826 AUC. On the 1067 * 800 data, LPCANet achieved 83.15% accuracy, 83.5% precision, 83.1% recall, 83.1% F1-score, and 0.9487 AUC. The results show that LPCANet enhances the feature representation by capturing the global and channel relationships and achieves better classification performance. In addition, the visual analysis of Grad_CAM makes the results interpretable, which makes it easier for the results to be accepted by pathologists and allows the method to become a second tool for auxiliary diagnosis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data and material are from another article, so the availability cannot be decided by us.

Code availability

The code of this study does not open access.

References

  1. Bosetti C, Gallus S, Franceschi S, Levi F, Bertuzzi M, Negri E et al (2002) Cancer of the larynx in non-smoking alcohol drinkers and in non-drinking tobacco smokers. Br J Cancer 87(5):516–518. https://doi.org/10.1038/sj.bjc.6600469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-A Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  3. Chu EA, Kim YJ (2008) Laryngeal cancer: diagnosis and preoperative work-up. Otolaryngol Clin N Am 41(4):673. https://doi.org/10.1016/j.otc.2008.01.016

    Article  Google Scholar 

  4. Liu YQ, Zhao Q, Ding GH, Zhu YT, Li WY, Chen WQ (2018) Incidence and mortality of laryngeal cancer in China, 2008–2012. Chin J Cancer Res 30(3):299–306. https://doi.org/10.21147/j.issn.1000-9604.2018.03.02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics. CA-A Cancer J Clin 70(1):7–30. https://doi.org/10.3322/canjclin.50.1.7

    Article  Google Scholar 

  6. Steuer CE, El-Deiry M, Parks JR, Higgins KA, Saba NF (2017) An update on larynx cancer. CA-A Cancer J Clin 67(1):32–50. https://doi.org/10.3322/caac.21386

    Article  Google Scholar 

  7. Sun H, Zeng XX, Xu T, Peng G, Ma YT (2020) Computer-aided diagnosis in histopathological images of the endometrium using a convolutional neural network and attention mechanisms. IEEE J Biomed Health Inform 24(6):1664–1676. https://doi.org/10.1109/jbhi.2019.2944977

    Article  PubMed  Google Scholar 

  8. Spanhol F A, Oliveira L S, Petitjean C, Heutte L (2016) Breast cancer histopathological image classification using convolutional neural networks. In: IEEE international joint conference on neural networks, pp 2560–2567. https://doi.org/10.1109/IJCNN.2016.7727519

  9. Kanavati F, Toyokawa G, Momosaki S, Rambeau M, Kozuma Y, Shoji F et al (2020) Weakly-supervised learning for lung carcinoma classification using deep learning. Sci Rep 10(1):11. https://doi.org/10.1038/s41598-020-66333-x

    Article  CAS  Google Scholar 

  10. Huang P, Tan XH, Chen C, Lv XY, Li YM (2021) AF-SENet: classification of cancer in cervical tissue pathological images based on fusing deep convolution features. Sensors 21(1):20. https://doi.org/10.3390/s21010122

    Article  Google Scholar 

  11. Duran-Lopez L, Dominguez-Morales JP, Conde-Martin AF, Vicente-Diaz S, Linares-Barranco A (2020) PROMETEO: a CNN-based computer-aided diagnosis system for WSI prostate cancer detection. IEEE Access 8:128613–128628. https://doi.org/10.1109/access.2020.3008868

    Article  Google Scholar 

  12. Xu Y, Jia Z, Ai Y, Zhang F, Lai M, Eric I et al (2015) Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In: IEEE international conference on acoustics, speech and signal processing, pp 947–951. https://doi.org/10.1109/ICASSP.2015.7178109

  13. Filipczuk P, Fevens T, Krzyzak A, Monczak R (2013) Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans Med Imaging 32(12):2169–2178. https://doi.org/10.1109/tmi.2013.2275151

    Article  PubMed  Google Scholar 

  14. Wan SH, Huang XL, Lee HC, Fujimoto JG, Zhou C (2015) Spoke-LBP and ring-LBP: new texture features for tissue classification. In: IEEE international symposium on biomedical imaging, pp 195–199. https://doi.org/10.1109/ISBI.2015.7163848

  15. Huang P, Zhang SL, Li M, Wang J, Ma CL, Wang BW et al (2020) Classification of cervical biopsy images based on LASSO and EL-SVM. IEEE Access 8:24219–24228. https://doi.org/10.1109/access.2020.2970121

    Article  Google Scholar 

  16. Stone N, Stavroulaki P, Kendall C, Birchall M, Barr H (2000) Raman spectroscopy for early detection of laryngeal malignancy: preliminary results. Laryngoscope 110(10):1756–1763. https://doi.org/10.1097/00005537-200010000-00037

    Article  CAS  PubMed  Google Scholar 

  17. Lau DP, Huang ZW, Lui H, Anderson DW, Berean K, Morrison MD et al (2005) Raman spectroscopy for optical diagnosis in the larynx: preliminary findings. Lasers Surg Med 37(3):192–200. https://doi.org/10.1002/lsm.20226

    Article  PubMed  Google Scholar 

  18. Lin K, Cheng DLP, Huang ZW (2012) Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy. Biosens Bioelectron 35(1):213–217. https://doi.org/10.1016/j.bios.2012.02.050

    Article  CAS  PubMed  Google Scholar 

  19. Fostiropoulos K, Arens C, Betz C, Kraft M (2016) Noninvasive imaging using autofluorescence endoscopy. Value for the early detection of laryngeal cancer. HNO 64(1):13–18. https://doi.org/10.1007/s00106-015-0095-5

    Article  CAS  PubMed  Google Scholar 

  20. Bertino G, Cacciola S, Fernandes WB, Fernandes CM, Occhini A, Tinelli C et al (2015) Effectiveness of narrow band imaging in the detection of premalignant and malignant lesions of the larynx: validation of a new endoscopic clinical classification. Head Neck 37(2):215–222. https://doi.org/10.1002/hed.23582

    Article  PubMed  Google Scholar 

  21. Volgger V, Felicio A, Lohscheller J, Englhard AS, Al-Muzaini H, Betz CS et al (2017) Evaluation of the combined use of narrow band imaging and high-speed imaging to discriminate laryngeal lesions. Lasers Surg Med 49(6):609–618. https://doi.org/10.1002/lsm.22652

    Article  PubMed  Google Scholar 

  22. Davaris N, Voigt-Zimmermann S, Kropf S, Arens C (2019) Flexible transnasal endoscopy with white light or narrow band imaging for the diagnosis of laryngeal malignancy: diagnostic value, observer variability and influence of previous laryngeal surgery. Eur Arch Otorhinolaryngol 276(2):459–466. https://doi.org/10.1007/s00405-018-5256-1

    Article  PubMed  Google Scholar 

  23. Ahmadzada S, Tseros E, Sritharan N, Singh N, Smith M, Palme CE et al (2020) The value of narrowband imaging using the Ni classification in the diagnosis of laryngeal cancer. Laryngosc Investig Otolaryngol 5(4):665–671. https://doi.org/10.1002/lio2.414

    Article  Google Scholar 

  24. Ninos K, Kostopoulos S, Kalatzis I, Sidiropoulos K, Ravazoula P, Sakellaropoulos G et al (2016) Microscopy image analysis of p63 immunohistochemically stained laryngeal cancer lesions for predicting patient 5-year survival. Eur Arch Otorhinolaryngol 273(1):159–168. https://doi.org/10.1007/s00405-015-3747-x

    Article  PubMed  Google Scholar 

  25. Kleihues P, Sobin LH (2000) World health organization classification of tumors. Cancer 88(12):2887–2887. https://doi.org/10.1002/1097-0142(20000615)88:12%3c2887::Aid-cncr32%3e3.0.Co;2-f

    Article  CAS  PubMed  Google Scholar 

  26. Wright JR, Albert C (2020) Broders, tumor grading, and the origin of the long road to personalized cancer care. Cancer Med 9(13):4490–4494. https://doi.org/10.1002/cam4.3112

    Article  PubMed  PubMed Central  Google Scholar 

  27. Srinidhi CL, Ciga O, Martel AL (2021) Deep neural network models for computational histopathology: a survey. Med Image Anal 67:26. https://doi.org/10.1016/j.media.2020.101813

    Article  Google Scholar 

  28. Steinbuss G, Kriegsmann K, Kriegsmann M (2020) Identification of gastritis subtypes by convolutional neuronal networks on histological images of antrum and corpus biopsies. Int J Mol Sci 21(18):16. https://doi.org/10.3390/ijms21186652

    Article  Google Scholar 

  29. Sheikh TS, Lee Y, Cho MY (2020) Histopathological classification of breast cancer images using a multi-scale input and multi-feature network. Cancers 12(8):20. https://doi.org/10.3390/cancers12082031

    Article  CAS  Google Scholar 

  30. Jiang Y, Chen L, Zhang H, Xiao X (2019) Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module. PLoS ONE 14(3):21. https://doi.org/10.1371/journal.pone.0214587

    Article  CAS  Google Scholar 

  31. Nuechterlein KH, Parasuraman R, Jiang Q (1983) Visual sustained attention—image degradation produces rapid sensitivity decrement over time. Science 220(4594):327–329. https://doi.org/10.1126/science.6836276

    Article  CAS  PubMed  Google Scholar 

  32. Chorowski J, Bahdanau D, Serdyuk D, Cho K, Bengio Y (2015) Attention-based models for speech recognition. In: Annual conference on neural information processing systems. https://arxiv.org/abs/1506.07503

  33. Zhou P, Shi W, Tian J, Qi ZY, Li BC, Hao HW et al (2016) Attention-based bidirectional long short-term memory networks for relation classification. In: 54th annual meeting of the association-for-computational-linguistics, pp 207–212. https://doi.org/10.18653/v1/p16-2034

  34. Yang H, Kim JY, Kim H, Adhikari SP (2020) Guided soft attention network for classification of breast cancer histopathology images. IEEE Trans Med Imaging 39(5):1306–1315. https://doi.org/10.1109/tmi.2019.2948026

    Article  PubMed  Google Scholar 

  35. Tomita N, Abdollahi B, Wei JS, Ren B, Suriawinata A, Hassanpour S (2019) Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides. JAMA Netw Open 2(11):13. https://doi.org/10.1001/jamanetworkopen.2019.14645

    Article  Google Scholar 

  36. Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: The Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7794–7803. https://doi.org/10.1109/CVPR.2018.00813

  37. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: The Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141. https://doi.org/10.1109/CVPR.2018.00745

  38. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: The Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  39. Selvaraju RR, Das A, Vedantam R, Cogswell M, Parikh D, Batra DJ (2016) Grad-cam: why did you say that? https://arxiv.org/abs/1611.07450

  40. Delides A, Panayiotides I, Alegakis A, Kyroudi A, Banis C, Pavlaki A et al (2005) Fractal dimension as a prognostic factor for laryngeal carcinoma. Anticancer Res 25(3):2141–2144

    PubMed  Google Scholar 

  41. Dobros W, Gil K, Chlap Z, Olszewski E (1999) The use of nuclear morphometry for the prediction of survival in patients with advanced cancer of the larynx. Eur Arch Otorhinolaryngol 256(5):257–261. https://doi.org/10.1007/s004050050153

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaowei Tang or Pan Huang.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Consent to participate

All authors agree to participate.

Consent for publication

All authors agree publication.

Ethics approval

This research work does not involve chemicals, procedures, or equipment that have any unusual hazards inherent in their use.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Tang, C., Huang, P. et al. LPCANet: Classification of Laryngeal Cancer Histopathological Images Using a CNN with Position Attention and Channel Attention Mechanisms. Interdiscip Sci Comput Life Sci 13, 666–682 (2021). https://doi.org/10.1007/s12539-021-00452-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00452-5

Keywords

Navigation