Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flexo-photovoltaic effect in MoS2

Abstract

The theoretical Shockley–Queisser limit of photon–electricity conversion in a conventional p–n junction could be potentially overcome by the bulk photovoltaic effect that uniquely occurs in non-centrosymmetric materials. Using strain-gradient engineering, the flexo-photovoltaic effect, that is, the strain-gradient-induced bulk photovoltaic effect, can be activated in centrosymmetric semiconductors, considerably expanding material choices for future sensing and energy applications. Here we report an experimental demonstration of the flexo-photovoltaic effect in an archetypal two-dimensional material, MoS2, by using a strain-gradient engineering approach based on the structural inhomogeneity and phase transition of a hybrid system consisting of MoS2 and VO2. The experimental bulk photovoltaic coefficient in MoS2 is orders of magnitude higher than that in most non-centrosymmetric materials. Our findings unveil the fundamental relation between the flexo-photovoltaic effect and a strain gradient in low-dimensional materials, which could potentially inspire the exploration of new optoelectronic phenomena in strain-gradient-engineered materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microscopic views of the BPV and flexoelectric effects.
Fig. 2: FPV effect of the MoS2 sheet at room temperature.
Fig. 3: Temperature-dependent FPV effect of the MoS2 sheet.
Fig. 4: Overview of the BPV effect in non-centrosymmetric materials.

Similar content being viewed by others

Data availability

The data of this study are available from the corresponding author upon reasonable request.

References

  1. Sturman, B. I. & Fridkin, V. M. Photovoltaic and Photo-Refractive Effects in Noncentrosymmetric Materials Vol. 8 (CRC, 1992).

  2. Glass, A. M., Linde, D. V. D. & Negran, T. J. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233–235 (1974).

    Article  CAS  Google Scholar 

  3. Koch, W. T. H., Munser, R., Ruppel, W. & Würfel, P. Bulk photovoltaic effect in BaTiO3. Solid State Commun. 17, 847–850 (1975).

    Article  CAS  Google Scholar 

  4. Brody, P. S. High voltage photovoltaic effect in barium titanate and lead titanate-lead zirconate ceramics. J. Solid State Chem. 12, 193–200 (1975).

    Article  CAS  Google Scholar 

  5. Nadupalli, S., Kreisel, J. & Granzow, T. Increasing bulk photovoltaic current by strain tuning. Sci. Adv. 5, eaau9199 (2019).

    Article  CAS  Google Scholar 

  6. Qin, M., Yao, K. & Liang, Y. C. High efficient photovoltaics in nanoscaled ferroelectric thin films. Appl. Phys. Lett. 93, 122904 (2008).

    Article  CAS  Google Scholar 

  7. Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S.-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009).

    Article  CAS  Google Scholar 

  8. Alexe, M. & Hesse, D. Tip-enhanced photovoltaic effects in bismuth ferrite. Nat. Commun. 2, 256 (2011).

    Article  CAS  Google Scholar 

  9. Zenkevich, A. et al. Giant bulk photovoltaic effect in thin ferroelectric BaTiO3 films. Phys. Rev. B 90, 161409 (2014).

    Article  CAS  Google Scholar 

  10. Spanier, J. E. et al. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photonics 10, 611–616 (2016).

    Article  CAS  Google Scholar 

  11. Nechache, R. et al. Photovoltaic properties of Bi2FeCrO6 epitaxial thin films. Appl. Phys. Lett. 98, 202902 (2011).

    Article  CAS  Google Scholar 

  12. Grinberg, I. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

    Article  CAS  Google Scholar 

  13. Sun, Z. et al. A photoferroelectric perovskite-type organometallic halide with exceptional anisotropy of bulk photovoltaic effects. Angew. Chem. Int. Ed. 55, 6545–6550 (2016).

    Article  CAS  Google Scholar 

  14. Nakamura, M. et al. Shift current photovoltaic effect in a ferroelectric charge-transfer complex. Nat. Commun. 8, 281 (2017).

    Article  CAS  Google Scholar 

  15. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    Article  CAS  Google Scholar 

  16. Zhang, Y. J. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019).

    Article  CAS  Google Scholar 

  17. Belinicher, V., Ivchenko, E. & Sturman, B. Kinetic theory of the displacement photovoltaic effect in piezoelectrics. Zh. Eksp. Teor. Fiz. 83, 649–661 (1982).

    CAS  Google Scholar 

  18. Yang, M.-M., Kim, D. J. & Alexe, M. Flexo-photovoltaic effect. Science 360, 904–907 (2018).

    Article  CAS  Google Scholar 

  19. Mashkevich, V. & Tolpygo, K. Electrical, optical and elastic properties of diamond type crystals. Sov. Phys. JETP 5, 435–439 (1957).

    CAS  Google Scholar 

  20. Kogan, S. M. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5, 2069–2070 (1964).

    Google Scholar 

  21. Hong, J. & Vanderbilt, D. First-principles theory of frozen-ion flexoelectricity. Phys. Rev. B 84, 180101 (2011).

    Article  CAS  Google Scholar 

  22. Wang, B., Gu, Y., Zhang, S. & Chen, L.-Q. Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater. Sci. 106, 100570 (2019).

    Article  CAS  Google Scholar 

  23. Cross, L. E. Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006).

    Article  CAS  Google Scholar 

  24. Chu, K. et al. Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients. Nat. Nanotechnol. 10, 972–979 (2015).

    Article  CAS  Google Scholar 

  25. Gao, P. et al. Atomic-scale measurement of flexoelectric polarization at SrTiO3 dislocations. Phys. Rev. Lett. 120, 267601 (2018).

    Article  CAS  Google Scholar 

  26. Wang, H. et al. Direct observation of huge flexoelectric polarization around crack tips. Nano Lett. 20, 88–94 (2020).

    Article  CAS  Google Scholar 

  27. Lee, D. et al. Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107, 057602 (2011).

    Article  CAS  Google Scholar 

  28. Park, S. M. et al. Colossal flexoresistance in dielectrics. Nat. Commun. 11, 2586 (2020).

    Article  CAS  Google Scholar 

  29. Guo, R. et al. Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect. Nat. Commun. 11, 2571 (2020).

    Article  CAS  Google Scholar 

  30. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011).

    Article  CAS  Google Scholar 

  31. Dumitrică, T., Landis, C. M. & Yakobson, B. I. Curvature-induced polarization in carbon nanoshells. Chem. Phys. Lett. 360, 182–188 (2002).

    Article  Google Scholar 

  32. Duerloo, K.-A. N. & Reed, E. J. Flexural electromechanical coupling: a nanoscale emergent property of boron nitride bilayers. Nano Lett. 13, 1681–1686 (2013).

    Article  CAS  Google Scholar 

  33. Shi, W., Guo, Y., Zhang, Z. & Guo, W. Flexoelectricity in monolayer transition metal dichalcogenides. J. Phys. Chem. Lett. 9, 6841–6846 (2018).

    Article  CAS  Google Scholar 

  34. Feng, J., Qian, X. F., Huang, C. W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 865–871 (2012).

    Article  CAS  Google Scholar 

  35. Schankler, A. M., Gao, L. & Rappe, A. M. Large bulk piezophotovoltaic effect of monolayer 2H-MoS2. J. Phys. Chem. Lett. 12, 1244–1249 (2021).

    Article  CAS  Google Scholar 

  36. Li, H. et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015).

    Article  CAS  Google Scholar 

  37. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  CAS  Google Scholar 

  38. Rice, C. et al. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 87, 081307 (2013).

    Article  CAS  Google Scholar 

  39. Chakraborty, B., Matte, H. S. S. R., Sood, A. K. & Rao, C. N. R. Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 44, 92–96 (2013).

    Article  CAS  Google Scholar 

  40. Buscema, M. et al. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 13, 358–363 (2013).

    Article  CAS  Google Scholar 

  41. Sahoo, S., Gaur, A. P. S., Ahmadi, M., Guinel, M. J. F. & Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C. 117, 9042–9047 (2013).

    Article  CAS  Google Scholar 

  42. El-Mahalawy, S. H. & Evans, B. L. The thermal expansion of 2H-MoS2, 2H-MoSe2 and 2H-WSe2 between 20 and 800 °C. J. Appl. Crystallogr. 9, 403–406 (1976).

    Article  Google Scholar 

  43. Lager, G. A., Jorgensen, J. D. & Rotella, F. J. Crystal structure and thermal expansion of α‐quartz SiO2 at low temperatures. J. Appl. Phys. 53, 6751–6756 (1982).

    Article  CAS  Google Scholar 

  44. Cao, J. et al. Extended mapping and exploration of the vanadium dioxide stress-temperature phase diagram. Nano Lett. 10, 2667–2673 (2010).

    Article  CAS  Google Scholar 

  45. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  CAS  Google Scholar 

  46. Beal, A. R. & Hughes, H. P. Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2and 2H-MoTe2. J. Phys. C: Solid State Phys. 12, 881–890 (1979).

    Article  CAS  Google Scholar 

  47. Ichiki, M. et al. Photovoltaic effect of lead lanthanum zirconate titanate in a layered film structure design. Appl. Phys. Lett. 84, 395–397 (2004).

    Article  CAS  Google Scholar 

  48. Cao, D. et al. High-efficiency ferroelectric-film solar cells with an n-type Cu2O cathode buffer layer. Nano Lett. 12, 2803–2809 (2012).

    Article  CAS  Google Scholar 

  49. Ji, W., Yao, K. & Liang, Y. C. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv. Mater. 22, 1763–1766 (2010).

    Article  CAS  Google Scholar 

  50. Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010).

    Article  CAS  Google Scholar 

  51. Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

    Article  CAS  Google Scholar 

  52. Zhang, G. et al. New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect. Sci. Rep. 3, 1265 (2013).

    Article  CAS  Google Scholar 

  53. Astafiev, S., Fridkin, V. & Lazarev, V. The influence of the magnetic field on the linear bulk photovoltaic current in piezoelectric semiconductor GaP. Ferroelectrics 80, 251–254 (1988).

    Article  Google Scholar 

  54. Fridkin, V. M., Grekov, A. A. & Rodin, A. I. The bulk photovoltaic effect in the crystals without a center of symmetry. Ferroelectrics 43, 99–108 (1982).

    Article  CAS  Google Scholar 

  55. Mistewicz, K., Nowak, M. & Stróż, D. A ferroelectric–photovoltaic effect in SbSI nanowires. Nanomaterials 9, 580 (2019).

    Article  CAS  Google Scholar 

  56. Burger, A. M. et al. Direct observation of shift and ballistic photovoltaic currents. Sci. Adv. 5, eaau5588 (2019).

    Article  CAS  Google Scholar 

  57. Matsuo, H., Noguchi, Y. & Miyayama, M. Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications. Nat. Commun. 8, 207 (2017).

    Article  CAS  Google Scholar 

  58. Laurenti, M. et al. Nanobranched ZnO structure: p-type doping induces piezoelectric voltage generation and ferroelectric–photovoltaic effect. Adv. Mater. 27, 4218–4223 (2015).

    Article  CAS  Google Scholar 

  59. Chakrabartty, J., Harnagea, C., Celikin, M., Rosei, F. & Nechache, R. Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases. Nat. Photonics 12, 271–276 (2018).

    Article  CAS  Google Scholar 

  60. You, L. et al. Enhancing ferroelectric photovoltaic effect by polar order engineering. Sci. Adv. 4, eaat3438 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the US Army Research Office under grant number W911NF-21-1-0013 (J.J. and J.S.) and Air Force Office of Scientific Research under grant number FA9550-18-1-0116 (Y.W. and J.S.). The work is also supported by the NYSTAR Focus Center at Rensselaer Polytechnic Institute with contract number C150117 (L.Z., Y.X., G.-C.W. and J.S.). This work is also partially supported by the National Science Foundation under award numbers 2024972, 2031692 and 1916652 (Y.H., Z.C. and J.S.).

Author information

Authors and Affiliations

Authors

Contributions

J.J. and J.S. conceived the idea and designed the experiments (device structure, temperature-dependent and photon-polarization-dependent measurements). J.J. built the 2D materials transfer system and assembled the SPCM setup. J.J. prepared samples and fabricated the devices. Y.W. assisted with the growth of VO2. J.J. performed Raman mappings, photocurrent mappings and light polarization dependence measurements. Z.C. and Y.H. assisted photocurrent measurements and calibrations. Y.X. and L.Z. performed atomic force microscopy measurements. J.J. processed the data. J.J. and J.S. analysed and interpreted the results. J.J. wrote the paper. All the authors were involved in the discussion for data analysis. G.-C.W. and J.S. revised the manuscript. J.S. supervised the project.

Corresponding authors

Correspondence to Jie Jiang or Jian Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1–5 and Figs. 1–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Chen, Z., Hu, Y. et al. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 16, 894–901 (2021). https://doi.org/10.1038/s41565-021-00919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00919-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing