Skip to main content
Log in

The Role of Ice Cover in the Formation of Bottom Sediment Chemical Composition on the East Siberian Shelf

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Transfer functions for reconstruction of the duration of ice-free period at stations in the Chukchi, East Siberian and Laptev seas have been developed by comparison of hydrometeorological data and the chemical composition of bottom sediments accumulated during observation period. It has been established that in addition to the previously discussed processes through which the ice cover affects the chemical composition of bottom sediments (primary bioproductivity and redox conditions of bottom waters), there are several mainly local processes developed on the East Siberian shelf. These are the changes of terrestrial aqueous and solid runoff; coastal abrasion rate; current structure and water exchange through the Bering Strait between the Pacific and Arctic oceans; and intensity and direction of the ice/iceberg rafting of sediments. It is shown that some typical elements (Br, Ca, As, Fe, Ga) can be used as universal geochemical proxies for qualitative reconstruction of ice conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A Review of Hydrometeorological Processes in the Arctic Ocean, Ed. by I. E. Frolov (AANII, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  2. P. G. Appleby, F. Oldfield, R. Thomson, and P. Huttunen “210Pb dating of annually laminated lake sediments from Finland,” Nature 280, 53–55 (1979).

    Article  Google Scholar 

  3. A. S. Astakhov, Litochemistry of Sediments of the East Asian Margin (Dal’nauka, Vladivostok, 2001) [in Russian].

    Google Scholar 

  4. A. S. Astakhov, V. V. Sattarova, A. I. Svininnikov, E. V. Gretskaya, N. G. Vashchenkova, and M. V. Ivanov, Sedimentation and Ore Genesis in the Deryugin Basin, Sea of Okhotsk (Dal’nauka, Vladivostok, 2008) [in Russian].

    Google Scholar 

  5. A. Astakhov, S. Wang Rujan, Gao Aijou, and M. V. Ivanov, “Lithochemical evidence of recent geological activity in the Chukchi Sea,” Dokl. Earth Sci. 422 (5), 1268–1272 (2008).

    Article  Google Scholar 

  6. A. S. Astakhov, E. A. Gusev, A. N. Kolesnik, and R. B. Shakirov, “Conditions of the accumulation of organic matter and metals in the bottom sediments of the Chukchi Sea,” Russ. Geol. Geophys. 54 (9), 1056–1070 (2013).

    Article  Google Scholar 

  7. A. S. Astakhov, A. A. Bosin, A. N. Kolesnik, and M. S. Obrezkova, “Sediment geochemistry and diatom distribution in the Chukchi Sea: application for bioproductivity and paleoceanography,” Oceanography 28 (3), 190–201 (2015).

    Article  Google Scholar 

  8. A. S. Astakhov, A. A. Bosin, Y. G. Liu, A. V. Darin, I. A. Kalugin, A. V. Artemova, V. V. Babich, M. S. Melgunov, Yu. P. Vasilenko, and E. G. Vologina, “Reconstruction of ice conditions in the northern Chukchi Sea during recent centuries: Geochemical proxy compared with observed data,” Quatern. Int. 522, 23–37 (2019a).

    Article  Google Scholar 

  9. A. S. Astakhov, V. V. Sattarova, Shi Xuefa, Hu Limin, K. I. Aksentov, A. V. Alatortsev, O. N. Kolesnik, and A. A. Mariash, “Distribution and sources of rare earth elements in sediments of the Chukchi and East Siberian seas,” Polar Sci. 20, 148–159 (2019b).

    Article  Google Scholar 

  10. A. S. Astakhov, Shi Xuefa, A. V. Darin, I. A. Kalugin, Hu Limin, I. B. Tsoy, A. N. Kolesnik, M. A. Obrezkova, A. V. Alatorcev, and V. V. Babich, “Reconstructing ice conditions in the southern Chukchi Sea during the last millennia based on proxy data: chemical composition of sediments and diatom assemblages,” Mar. Geol. 427, 106220 (2020).

    Article  Google Scholar 

  11. V. V. Babich, “Iteration method of purposeful classification and ordering of objects,” in Pattern Classification in Tasks of Qualitative Prediction of Ore Deposits, (Nauka, Sib. Otd., Novosibirsk, 1980), pp. 59–67 [in Russian].

  12. L. A. Borisenok, Geochemistry of Gallium (Mosk Univ., Moscow, 1971) [in Russian].

    Google Scholar 

  13. A. N. Charkin, O. V. Dudarev, I. P. Semiletov, A. V. Kruhmalev, J. E. Vonk, L. Sánchez-García, E. Karlsson, and Ö. Gustafsson, “Seasonal and interannual variability of sedimentation and organic matter distribution in the Buor Khaya gulf – the primary recipient of input from Lena river and coastal erosion in the Laptev sea,” Biogeosci. Discussions. 8 (1), 2581–2594 (2011).

    Article  Google Scholar 

  14. J. Cohen, J. A. Screen, J. C. Furtado, M. Barlow, D. Whittleston, D. Coumou, J. Francis, K. Dethloff, D. Entekhabi, J. Overland, and J. Jones, “Recent Arctic amplification and extreme mid–latitude weather,” Nat. Geosci. 7 (9), 627–637 (2014).

    Article  Google Scholar 

  15. K. Crane, “Russian–American long-term census of the Arctic; initial expedition to the Bering and Chukchi seas,” Arctic Res. United States 19, 73 (2005).

    Google Scholar 

  16. A. V. Darin, I. A. Kalugin, and Ya. V. Rakshun, “Scanning X-ray microanalysis of bottom sediment samples using synchrotron radiaton from VEPP–3 storage, Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences,” Izv. Akad. Nauk, Ser. Fiz., 77 (2), 204–206 (2013).

    Google Scholar 

  17. A. de Vernal, “Variability of Arctic sea–ice cover at decadal to millennial scales: the proxy records,” Pages Magazine. 25(3), 144–145 (2017).

    Article  Google Scholar 

  18. A. de Vernal, Claude Hillaire-Marcel, and Dennis A. Darby, “Variability of sea ice cover in the Chukchi Sea (western Arctic Ocean) during the Holocene,” Paleoceanography 20 (4), 71 (2005).

    Article  Google Scholar 

  19. E. T. Degens, E. G. Williams, and M. L. Keith, “Environmental studies of carboniferous sediments. Pt. 1. Geochemical criteria for differentiation marine from fresh water shales,” Bull. Amer. Ass. Petrol. Geol. 42, 2427–2455 (1957).

    Google Scholar 

  20. O. V. Dudarev, A. N. Charkin, N. E. Shakhova, A. K. Mazurov, and I. P. Semiletov, Modern Lithomorphogenesis on the Eastern Antarctic Shelf of Russia (Tomsk. Politekhn.Univ., Tomsk, 2016) [in Russian].

    Google Scholar 

  21. M. J. Ellwood and K. A. Hunter, “The incorporation of zinc and iron into the frustule of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 45 (7), 1517–1524 (2000).

    Article  Google Scholar 

  22. Environmental Working Group, Oceanography Atlas for the Winter Period, Joint US–Russian Atlas of the Arctic Ocean, Ed. by F. Tanis and L. Timokhov (University of Colorado, Boulder, 1997).

    Google Scholar 

  23. Environmental Working Group, Oceanography Atlas for the Summer Period. Joint US–Russian Atlas of the Arctic Ocean, Ed. by F. Tanis and L. Timokhov (University of Colorado, Boulder, 1998).

    Google Scholar 

  24. J. R. Farmer, T. M. Cronin, A. de Vernal, et al., “Western Arctic Ocean temperature variability during the last 8000 years,” Geophys. Res. Lett. 38 (24), L24602 (2011).

    Article  Google Scholar 

  25. J. V. Gardner, W. E. Dean, D. H. Klise, and J. G. Baldauf, “A climate-related oxidizing events in deep–sea sediments from Bering Sea,” Quatern. Res. 18 (1), 91–107 (1982).

    Article  Google Scholar 

  26. V. M. Gavshin, B. L. Shcherbov, M. S. Melgunov, V. D. Strakhovenko, V. A. Bobrov, and V. M. Tsibul’chik, “137Cs and 210Pb in lacustrine sediments of the steppe Altai as indicators of dynamics of anthropogenic changes of geochemical background during 20th century,” Geol. Geofiz. 40 (9), 1331–1341 (1999).

    Google Scholar 

  27. V. M. Gavshin, M. S. Melgunov, F. V. Sukhorukov, V. A. Bobrov, I. A. Kalugin, and J. Klerkx “Disequilibrium between uranium and its progeny in the Lake Issyk-Kul system (Kyrgyzstan) under a combined effect of natural and manmade processes,” J. Environ. Radioact. 83 (1), 61–74 (2005).

    Article  Google Scholar 

  28. M. Gharibreza, J. K. Raj, I. Yusoff, Z. Othman, W. Z. W. M. Tahir, and M. A. Ashraf, “Historical variations of Bera Lake (Malaysia) sediments geochemistry using radioisotopes and sediment quality indices,” J. Radioanal. Nucl. Chem. 295 (3), 1715–1730 (2012).

    Article  Google Scholar 

  29. V. V. Gordeev, River Runoff in Ocean and Specifics of its Geochemistry (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  30. J. M. Grebmeier, “Biological community shifts in Pacific Arctic and sub-Arctic seas,” Annu. Rev. Mar. Sci. 4, 63–78 (2012).

    Article  Google Scholar 

  31. J. M. Grebmeier, L. W. Cooper, H. M. Feder, and B. I. Sirenko, “Ecosystem dynamics of the Pacific–influenced Northern Bering and Chukchi Seas in the Amerasian Arctic,” Prog. Oceanogr. 71 (2–4), 331–361 (2006).

    Article  Google Scholar 

  32. G. W. Gribble, “Naturally occurring organohalogen compounds,” Acc. Chem. Res. 31, 141–152 (1998).

    Article  Google Scholar 

  33. L. von Gunten, M. Grosjean, C. Kamenik, M. Fujak, and R. Urrutia, “Calibrating biogeochemical and physical climate proxies from non-varved lake sediments with meteorological data: methods and case studies,” J. Paleolimnol. 47(4), 583–600 (2012).

    Article  Google Scholar 

  34. J. D. Haigh, M. Lockwood, and M. S. Giampapa, The Sun, Solar Analogs and the Climate, Saas–Fee Advanced Courses 34 (Springer–Verlag, Berlin–Heidelberg, 2005).

  35. K. R. Hendry and R. E. M. Rickaby, “Opal (Zn/Si) ratios as a nearshore geochemical proxy in coastal Antarctica,” Paleoceanography 23 (2), PA2218 (2008).

  36. T. Horner, R. Stein, K. Fahl, and D. Birgel, “Post–glacial variability of sea ice cover, river run-off and biologicalproduction in the western Laptev Sea (Arctic Ocean)—A high-resolution biomarker study,” Quatern. Sci. Rev. 143, 133–149 (2016).

    Article  Google Scholar 

  37. I. A. Kalugin, A. V. Darin, and V. V. Babich, “Reconstruction of annual air temperatures for three thousand years in Altai region by lithological and geochemical indicators in Teletskoe Lake sediments,” Dokl. Earth Sci. 426 (4), 681–684 (2009).

    Article  Google Scholar 

  38. L. D. Keigwin, J. P. Donnelly, M. S. Cook, N. W. Driscoll, and J. Brigham–Grette, “Rapid sea-level rise and Holocene climate in the Chukchi Sea,” Geology 34 (10), 861–864 (2006).

    Article  Google Scholar 

  39. K. R. Kim, G. Kim, K. Kim, V. Lobanov, V. Ponomarev, and A. Salyuk, A sudden bottom-water formation during the severe winter 2000–2001: the case of the East/Japan sea,” Geophys. Res. Lett. 29 (8), 75–1–75–4 (2002).

  40. C. Kinnard, C. M. Zdanowicz, D. A. Fisher, E. Isaksson, A. de Vernal, and L. G. Thompson, “Reconstructed changes in Arctic sea ice over the past 1.450 years,” Nature 479 (7374), 509–512 (2011).

    Article  Google Scholar 

  41. D. M. Kobayashi, Yamamoto, T. Irino, et al., “Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: changes in the provenance of western Arctic Ocean sediments since the last glacial period,” Polar Sci. 10, 519–531 (2016).

    Article  Google Scholar 

  42. V. A. Kosheleva and D. S. Yashin, Bottom Sediments of the Russia’s Arctic Seas (VNIIOKeanologiya, St. Petersburg, 1999) [in Russian].

  43. C. Lalande, J. M. Grebmeier, P. Wassmann, L. W. Cooper, M. V. Flint, and V. M. Sergeeva, “Export fluxes of biogenic matter in the presence and absence of seasonal sea ice cover in the Chukchi Sea,” Cont. Shelf Res. 27(15), 2051–2065 (2007).

    Article  Google Scholar 

  44. Li Li, Liu Yanguang, Wang Xiaojing, Hu Limin, Yang Gang, Wang Hongmin, A. A. Bosin, A.S. Astakhov, and Xuefa Shi, “Early diagenesis and accumulation of redox-sensitive elements in East Siberian Arctic Shelves,” Marine Geol. 429, 106309 (2020).

    Article  Google Scholar 

  45. L. Löwemark, C. März, M. O’Regan, and R. Gyllencreutz, “Arctic Ocean Mn-stratigraphy: genesis, synthesis and inter–basin correlation,” Quatern. Sci. Rev. 92, 97–111 (2014).

    Article  Google Scholar 

  46. V. N. Lukashin, Geochemistry of Trace Elements in Sedimentation in the Indian Ocean (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  47. C. Marz, B. Schnetger, and H.-J. Brumsack, “Paleoenvironmental implications of Cenozoic sediments from the central Arctic Ocean (IODP Expedition 302) using inorganic geochemistry,” Paleoceanography. 25 (3), A3206 (2010).

    Article  Google Scholar 

  48. L. M. Mayer, L. L. Schick, M. A. Allison, K. C. Ruttenberg, and S. J. Bentley, “Marine vs. terrigenous organic matter in Louisiana coastal sediments: the uses of bromine: organic carbon ratios,” Marine Chem. 107 (2), 244–254 (2007).

    Article  Google Scholar 

  49. P. L. McCall, J. A. Robbins, and G. Matisoff, “137Cs and 210Pb transport and geochronologies in urbanized reservoirs with rapidly increasing sedimentation rates,” Chem. Geol. 44 (1–3), 33–65 (1984).

    Article  Google Scholar 

  50. J. L. McKay and T. F. Pedersen, “The accumulation of silver in marine sediments: A link to biogenic Ba and marine productivity,” Global Biogeochem. Cycles 22 (4), GB4010 (2008).

    Article  Google Scholar 

  51. A.-K. Meinhardt, C. März, S. Schuth, K. A. Lettmann, B. Schnetger, J.-O. Wolff, and H.-J. Brumsack, “Diagenetic regimes in Arctic Ocean sediments: implications for sediment geochemistry and core correlation,” Geochem. Cosmochim. Acta 188, 125–146 (2016).

    Article  Google Scholar 

  52. M. Nicolle, M. Debret, N. Massei, C. Colin, A. deVernal, D. Divine, P. W. Johannes, A. Hormes, A. Korhola, W. Hans, and H. W. Linderholm, “Climate variability in the subarctic area for the last 2 millennia,” Clim. Past. 14 (1), 101–116 (2018).

    Article  Google Scholar 

  53. E. C. Nwaodua, J. D. Ortiz, and E. M. Griffith, “Diffuse spectral reflectance of surficial sediments indicates sedimentary environments on the shelves of the Bering Sea and western Arctic,” Marine Geol. 355, 218–233 (2014).

    Article  Google Scholar 

  54. F. Oldfield and P. G. Appleby, “A combined radiometric and mineral magnetic approach to recent geochronology in lakes affected by catchments disturbance and sediment redistribution,” Chem. Geol. 44(1–3), 67–83 (1984).

    Article  Google Scholar 

  55. J. D. Ortiz, L. Polyak, J. M. Grebmeier, et al., “Provenance of Holocene sediment on the Chukchi–Alaskan margin based on combined diffuse spectral reflectance and quantitative X-ray diffraction analysis,” Glob. Planet. Change. 68(1–2), 73–84 (2009).

    Article  Google Scholar 

  56. V. V. Plotnikov, and V. I. Pustoshnova, “Variability and conjugation of ice conditions in the East Arctic Sea System (Laptev, East Siberian, Chukchi seas),” Meteorol. Gidrol., 37 (7), 54–65 (2012).

    Google Scholar 

  57. L. S. Polyak, T. Belt, P. Cabedo–Sanz, M. Yamamoto, and Y.-H. Park, “Holocene sea-ice conditions and circulation at the Chukchi–Alaskan margin, Arctic Ocean, inferred from biomarker proxies,” The Holocene 26 (11), 1810–1821 (2016).

    Article  Google Scholar 

  58. V. Rachold, “Major, trace and rare earth element geochemistry of suspended particulate material of East Siberian rivers draining to the Arctic Ocean, In: Land–Ocean Systems in the Siberian Arctic: Dynamics and History, Ed. by H. Kassens, H. A. Bauch, I. Dmitrenko, H. Eicken, H.-W. Hubberten, M. Melles, J. Tiede, and L. Timokhov (Springer–Verlag, Berlin, 1999), pp. 199–222.

    Google Scholar 

  59. I. Rigor, “Arctic Ocean buoy program,” ARCOS Newsl. 44, 1(1992).

    Google Scholar 

  60. N. Rudaya, L. Nazarova, A. Andreev, E. Novenko, P. Shilov, I. Kalugin, A. Daryin, V. Babich, and H.-C. Li, “Quantitative reconstructions of mid- to Late Holocene climate and vegetation in the north–eastern Altai Mountains recorded in Lake Teletskoye,” Global Planet. Change. 141, 12–24 (2016)

    Article  Google Scholar 

  61. M. C. Serreze, A. D. Crawford, J. C. Stroeve, A. P. Barrett, and R. A. Woodgate, “Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea,” J. Geophys. Res.–Oceans 121(10), 7.308–7.325 (2016).

  62. N. Shakhova, I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and Ö. Gustafsson, “Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf,” Science 327(5970), 1246–1250 (2010).

    Article  Google Scholar 

  63. K. Shimada, T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky, “Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean,” Geophys. Res. Lett. 33(8), L08605 (2006).

    Article  Google Scholar 

  64. R. Stein, J. Matthießen, F. Niessen, A. Krylov, S. Nam, and E. Bazhenova, “Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean),” Polarforschung. 79(2), 97–121 (2010).

    Google Scholar 

  65. R. Stein, K. Fahl, I. Schade, A. Manerung, S. Wassmuth, F. Niessen, and S.-I. Nam,” Holocene variability in sea ice cover, primary production, and Pacific-water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean),” J. Quatern. Sci. 32(3), 362–379 (2017).

    Article  Google Scholar 

  66. J. Stroeve, M. M. Holland, W. Meier, T. Scambos, and M. Serreze, “Arctic sea ice decline: faster than forecast,” Geophys. Res. Lett. 34(9), L09501 (2007).

    Article  Google Scholar 

  67. H. Swärd, M. O’Regan, C. Pearce. et al., “Sedimentary proxies for Pacific water inflow through the Herald Canyon, western Arctic Ocean,” Arktos. 4, 1–13 (2018).

    Article  Google Scholar 

  68. L. D. Talley, V. Lobanov, V. Ponomarev, A. Salyuk, P. Tishchenko, I. Zhabin, and S. Riser, “Deep convection and brine rejection in the Japan Sea,” Geophys. Res. Lett. 30 (4), 1159(2003).

    Article  Google Scholar 

  69. U.S. National Ice Center, 2018. [WWW Document) http://www.natice.noaa.gov, accessed 12.5.2018.

  70. A. A. Vetrov, I. P. Semiletov, O. V. Dudarev, V. I. Peresypkin, and A. N. Charkin, “Composition and genesis of the organic matter in the bottom sediments of the East Siberian Sea,” Geochem. Int. 46 (2), 156–167 (2008).

    Article  Google Scholar 

  71. E. G. Vologina, M. Sturm, A. S. Astakhov, Shi Xuefa, “Anthropogenic traces in bottom sediments of Chukchi Sea,” Quatern. Int. 524, 86–92 (2019).

    Article  Google Scholar 

  72. R. Wang, W. Xiao, W. Li, and Y. Sun, “Late quaternary ice-rafted detritus events in the Chukchi Basin, western Arctic Ocean,” Chin. Sci. Bull. 55(4), 432–440 (2010).

    Article  Google Scholar 

  73. K. R. Wood, J. Wang, S. A. Salo, and P. J. Stabeno, “The climate of the Pacific Arctic: during the first RUSALCA decade 2004–2013,” Oceanography. 28(3), 24–35 (2015).

    Article  Google Scholar 

  74. R. A. Woodgate, T. Weingartner, and R. Lindsay, “The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat,” Geophys. Res. Lett. 37(1), L01602 (2010).

    Article  Google Scholar 

  75. Ya. E. Yudovich, and M. P. Ketris, Geochemical Indicators of Lithogenesis (Lithological Geochemistry) (Geoprint, Syltyvkar, 2011) [in Russian].

  76. E. A. Zykov, “Ecological–geochemical characteristics of bottom sediments of water basin of the Chukotka–Alaska region,” Izv. RGPU, 141, 131–140 (2011).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the team of the R/V Akademik M.A. Lavrentiev and researchers of Cruises 77 and 83 for help in the performance of the studies.

Funding

This work was made in the framework of the State Task of the Il’ichev Pacific Oceanological Institute of the Russian Academy of Sciences and Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences (project nos. 121021700342-9 and AAAA-A17-117122790038-7) with a financial support of the Russia Foundation for Basic Research (project no. 18-05-60104-Arctic). Expedition works were supported by the Ministry of Science and Education of the Russian Federation and the Fund of Shandong Province for the Qingdao National Laboratory of Marine Sciences and Technology (Grant no. 2018SDKJ0104-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Astakhov, I.A. Kalugin or Xuefa Shi.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astakhov, A.S., Kalugin, I., Shi, X. et al. The Role of Ice Cover in the Formation of Bottom Sediment Chemical Composition on the East Siberian Shelf. Geochem. Int. 59, 585–598 (2021). https://doi.org/10.1134/S0016702921050025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921050025

Keywords:

Navigation