Skip to main content
Log in

Analytical Eddy Viscosity Model for Velocity Profiles in the Outer Part of Closed- and Open-Channel Flows

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The main equations in analytical modeling of turbulence, used in open-channel flows, are the parabolic profile of the eddy viscosity and the exponentially decreasing turbulent kinetic energy function. However, when using the definition of the eddy viscosity as a product between velocity and length scales and by taking the velocity scale as the root-square of turbulent kinetic energy, we show that the parabolic eddy viscosity profile is incompatible with the turbulent kinetic energy function. Taking into account this shortcoming, we consider an eddy viscosity formulation which is in agreement with the turbulent kinetic energy profile in the equilibrium region. This eddy viscosity is written in a form that allows the calibration of the two \({\text{R}}{{{\text{e}}}_{{{\tau }}}}\)-dependent parameters which have a linear behavior (where \({\text{R}}{{{\text{e}}}_{{{\tau }}}}\) is the friction Reynolds number). All results were validated by both direct numerical simulation and experimental data in the same range of friction Reynolds numbers, respectively \(300 < {\text{R}}{{{\text{e}}}_{{{\tau }}}} < 5200\) for closed-channel flows and \(923 < {\text{R}}{{{\text{e}}}_{{{\tau }}}} < 6139\) for open-channel flows. Comparisons with the direct numerical simulation data of the eddy viscosity in closed-channel flows for eight different flow conditions show good agreement. Mean streamwise velocities are obtained from solving of the momentum equation. For closed-channel flows, mean velocity profiles show very good agreement. For open-channel flows, results confirm that the use of the parabolic eddy viscosity is unable to improve the velocities while the proposed method shows good agreement. These results show the ability of this analytical eddy viscosity model to predict accurately the velocities in the outer region for both closed- and open-channel flows, without any ad hoc function or parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Atanov, G.A. and Voronin, S.T., A variational problem in the hydrodynamics of open channels, Fluid Dynamics, 1980, vol. 15, no. 4, pp. 607–610.

    Article  ADS  Google Scholar 

  2. Lyapidevskii, V.Y. and Chesnokov, A.A., Sub- and supercritical horizontal-shear flows in an open channel of variable cross-section, Fluid Dynamics, 2009, vol. 44, no. 6, pp. 903–916.

    Article  ADS  MathSciNet  Google Scholar 

  3. Peruzzi, C., Poggi, D., Ridol, L., and Manes, C., On the scaling of large-scale structures in smooth-bed turbulent open-channel flows, J. Fluid Mech., 2020, vol. 889, p. A1.

    Article  ADS  MathSciNet  Google Scholar 

  4. Tominaga, K., Nezu, I., Ezaki, K., and Nakagawa, H., Three-dimensional turbulent structure in straight open channel flows, J. Hydraulic Res., 1989, vol. 27, no. 1, pp. 149–173.

    Article  Google Scholar 

  5. Guo, J. and Julien, P.Y., Shear stress in smooth rectangular open-channel flows, J. Hydraulic Eng., ASCE, 2005, vol. 131, no. 1, pp. 30–37.

    Article  Google Scholar 

  6. Cameron, S.M., Nikora, V.I., and Stewart, M.T., Very-large-scale motions in rough-bed open-channel flow, J. Fluid Mech., 2017, vol. 814, pp. 416–429.

    Article  ADS  MathSciNet  Google Scholar 

  7. Nezu, I. and Nakagawa, H., Turbulence in open channel flows, Rotterdam: The Netherlands, A.A. Balkema, 1993.

    MATH  Google Scholar 

  8. Millikan, C.B., A critical discussion of turbulent flows in channels and circular tubes, in Proceedings of the Fifth International Congress on Applied Mechanics, Ed. J. P. Den Hartog & H. Peters, vol. 218, New York: Wiley, 1938, p. 386.

  9. Cardoso, A.H., Graf, W.H., and Gust, G., Uniform flow in a smooth open channel, J. Hydraulic Res., 1989, vol. 27, no. 5, pp. 603–616.

    Article  Google Scholar 

  10. Li, X., Dong, Z., and Chen, C., Turbulent flows in smooth-wall open channels with different slope, J. Hydraulic Res., 1995, vol. 33, no. 3, pp. 333–347.

    Article  Google Scholar 

  11. Marusic, I., Monty, J.P., Hultmark, M., and Smits, A.J., On the logarithmic region in wall turbulence, J. Fluid Mech., 2013, vol. 716, p. R3.

    Article  ADS  MathSciNet  Google Scholar 

  12. Nezu, I. and Rodi, W., Open channel measurements with a laser Doppler anemometer, J. Hydraulic Eng. ASCE, 1986, vol. 112, no. 5, pp. 335–355.

    Article  Google Scholar 

  13. Absi, R., A simple eddy viscosity formulation for turbulent boundary layers near smooth walls, C.R. Mecanique, vol. 337, no. 3, 2009, pp. 158–165.

    Article  ADS  Google Scholar 

  14. Welderufael, M., Absi, R., and Mélinge, Y., Assessment of velocity profile models for turbulent smooth wall open channel flows, ISH J. Hydraulic Eng., Available online, 2019.

  15. Afzal, N., Power law and log law velocity profiles in turbulent boundary-layer flow: equivalent relations at large Reynolds numbers, Acta Mechanica, 2001, vol. 151, no. 3, pp. 195–216.

    Article  Google Scholar 

  16. Cheng, N.S., Power-law index for velocity profiles in open channel flows, Adv. Water Res., 2007, vol. 30, no. 8, pp. 1775–1784.

    Article  ADS  Google Scholar 

  17. Coles, D., The law of the wake in the turbulent boundary layer, J. Fluid Mech., 1956, vol. 1, no. 2, pp. 191–226.

    Article  ADS  MathSciNet  Google Scholar 

  18. Hinze, J.O., Turbulence, New York: McGraw-Hill, 1975.

    Google Scholar 

  19. Krug, D., Philip, J., and Marusic, I., Revisiting the law of the wake in wall turbulence, J. Fluid Mech., 2017, vol. 811, pp. 421–435.

    Article  ADS  MathSciNet  Google Scholar 

  20. Absi, R., Rebuttal on a mathematical model on depth-averaged β-factor in open-channel turbulent flow, Env. Earth Sci., 2020, vol. 79, no. 5, p. 113.

    Article  Google Scholar 

  21. Prandtl, L., Uber die Ausgebildete turbulenz, Z. Angew. Math. Mech., 1925, vol. 5, no. 2, pp. 136–139.

    Article  Google Scholar 

  22. von Karman, Th., Mechanische Ahnlichkeit und turbulenz, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl., 1930, vol. 5, pp. 58–76.

    MATH  Google Scholar 

  23. Iwamoto, K., Suzuki, Y., and Kasagi, N., Reynolds number effect on wall turbulence: Toward effective feedback control, Int. J. Heat and Fluid Flow, 2002, vol. 23, no. 5, pp. 678–689.

    Article  Google Scholar 

  24. del Alamo, J.C. and Jimenez, J., Spectra of the very large anisotropic scales in turbulent channels, Phys. Fluids, 2003, vol. 15, no. 6, pp. L41–L44.

    Article  ADS  Google Scholar 

  25. Lozano-Duran, A. and Jimenez, J., Effect of the computational domain on direct simulations of turbulent channels up to \({\text{R}}{{{\text{e}}}_{{{\tau }}}} = 4200\), Phys. Fluids, 2014, vol. 26, no. 1, p. 011702.

    Article  ADS  Google Scholar 

  26. Lee, M. and Moser, R.D., Direct numerical simulation of turbulent channel flow up to \({\text{R}}{{{\text{e}}}_{{{\tau }}}} = 5200\), J. Fluid Mech., 2015, vol. 774, pp. 395–415.

    Article  ADS  Google Scholar 

  27. Absi, R., An ordinary differential equation for velocity distribution and dip phenomenon in open-channel flows, J. Hydraulic Res., 2011, vol. 49, no. 1, pp. 82–89.

    Article  Google Scholar 

  28. Rodi, W., Turbulence Models and Their Application in Hydraulics, a State of the Art Review, Rotterdam: A.A. Balkema, 1993.

    Google Scholar 

  29. Pope, S., Turbulent Flows, Cambridge: Cambridge University Press, 2000.

    Book  Google Scholar 

  30. Absi, R., Comment on turbulent diffusion of momentum and suspended particles: A finite-mixing-length theory, Phys. Fluids, 2005, vol. 17, no. 7, p. 079101.

    Article  ADS  Google Scholar 

  31. Businger, J.A. and Arya, S.P.S., Heights of the mixed layer in the stable stratified planetary boundary layer, Adv. Geophys., 1974, vol. 18A, pp. 73–92.

    ADS  Google Scholar 

  32. Hsu, T.W. and Jan, C.D., Calibration of Businger-Arya type of eddy viscosity model’s parameters, J. Waterw. Port Coastal. Ocean. Eng., ASCE, 1998, vol. 124, no. 5, pp. 281–284.

  33. Absi, R., Concentration profiles for fine and coarse sediments suspended by waves over ripples: An analytical study with the 1-DV gradient diffusion model, Adv. Water Res., 2010, vol. 33, no. 4, pp. 411–418.

    Article  Google Scholar 

  34. Absi, R., Eddy viscosity and velocity profiles in fully-developed turbulent channel flows, Fluid Dynamics, 2019, vol. 54, no. 1, pp. 137–147.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Absi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Absi, R. Analytical Eddy Viscosity Model for Velocity Profiles in the Outer Part of Closed- and Open-Channel Flows. Fluid Dyn 56, 577–586 (2021). https://doi.org/10.1134/S0015462821040017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462821040017

Keywords:

Navigation