Skip to main content
Log in

Failure Properties of Healthy and Diabetic Rabbit Thoracic Aortas and Their Potential Correlation with Mass Fractions of Collagen

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Diabetes Mellitus (DM) plays an important role in aortic remodeling and alters the wall mechanics. The purpose of this study is to investigate and compare multi-directional failure properties of healthy and diabetic thoracic aortas.

Methods

Thirty adult rabbits (1.6–2.2 kg) were collected and type 1 diabetic rabbit model was induced by injection of alloxan. A total of 10 control and 20 diabetic (with different time exposure to diabetic condition) rabbit descending thoracic aortas were harvested. Uniaxial tensile (UT) and radial tension (RT) tests were performed to determine circumferential, axial and radial failure stresses of the control and diabetic aortas, which were further correlated with mass fractions (MFs) of collagen.

Results

Throughout the UT test, there was a clear indication of anisotropic mechanical responses for some diabetic aorta specimens in the high loading domain. There was a trend towards an increase in the mean circumferential and axial failure stresses for the diabetic aortas when compared to the control aortas. However, differences were not statistically significant. The quantified failure stresses in the circumferential direction were, in general, higher than the stress values in the axial direction for both control and diabetic groups. For the RT test, the radial failure stresses of the diabetic aortas (in 8 weeks) were significantly higher than those of the control aortas (95 ± 17 vs. 63 ± 15 kPa, p = 0.01). Strong correlations were identified between the circumferential failure stresses and the MFs of collagen for both control and diabetic aortas. Nevertheless, this correlation was not present in the axial and radial directions.

Conclusion

The results suggest that there is a lower propensity of radial tear occurrence within the diabetic aortic wall. More importantly, time exposure to diabetic condition is not a factor that may change failure properties of the rabbit descending thoracic aortas in the circumferential and axial directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure. 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Akhtar, R., J. K. Cruichshank, X. Zhao, L. A. Walton, N. J. Gardiner, S. D. Barrett, H. K. Graham, B. Derby, and M. J. Sherratt. A Localized micro- and nano-scale remodeling in the diabetic aorta. Acta. Biomater. 10:4843–4851, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beckman, J. A., M. A. Creager, and P. Libby. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA-J. Am. Med. Assoc. 287:2570–2581, 2002.

    Article  CAS  Google Scholar 

  3. Coady, M. A., J. A. Rizzo, L. J. Goldstein, and J. A. Elefteriades. Natural history, pathogenesis, and eitology of thoracic aortic aneurysms and dissections. Cardiol. Clin. 17:615–635, 1999.

    Article  CAS  PubMed  Google Scholar 

  4. Converse, M. I., R. G. Walther, J. T. Ingram, Y. Li, S. M. Yu, and K. L. Monson. Detection and characterization of molecular-level collagen damage in overstretched cerebral arteries. Acta. Biomater. 67:307–318, 2018.

    Article  CAS  PubMed  Google Scholar 

  5. Cruickshank, K., L. Riste, S. G. Anderson, J. S. Wright, G. Dune, and R. G. Gosling. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 106:2085–2090, 2002.

    Article  PubMed  Google Scholar 

  6. Golledge, J., M. Karan, C. S. Moran, J. Muller, P. Clancy, A. E. Dear, and P. E. Norman. Reduced expansion rate of abdominal aortic aneurysms in patients with diabetes may be related to aberrant monocyte-matrix interactions. Eur. Heart J. 29:665–672, 2008.

    Article  CAS  PubMed  Google Scholar 

  7. Grundy, S. M., I. J. Benjamin, G. L. Burke, A. Chait, R. H. Eckel, B. V. Howard, W. Mitch, S. C. Smith, Jr, and J. R. Sowers. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100:1134–1146, 1999.

    Article  CAS  PubMed  Google Scholar 

  8. Hammes, H. P., and M. Brownlee. Advanced glycation end products and pathogenesis of diabetic complications. In: Diabetes Mellitus: A Fundamental and Clinical Text, edited by D. LeRoith, S. I. Taylor, and J. M. Olefsky. Philadelphia, Pa: Lippincott-Raven Publishers, 1996, pp. 810–815.

    Google Scholar 

  9. Haslach, Jr, H. W., L. N. Leahy, P. Fathi, J. M. Barrett, A. E. Heyes, T. A. Dumsha, and E. L. McMahon. Crack propagation and its shear mechanisms in the bovine descending aorta. Cardiovasc. Eng. Technol. 6:501–518, 2015.

    Article  PubMed  Google Scholar 

  10. Haslach, Jr, H. W., A. Siddiqui, A. Weerasooriya, R. Nguyen, J. Roshgadol, N. Monforte, and E. L. McMahon. Fracture mechanics of shear crack propagation and dissection in the healthy bovine descending aortic media. Acta. Biomater. 68:53–66, 2018.

    Article  PubMed  Google Scholar 

  11. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  12. Holzapfel, G. A., G. Sommer, T. C. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:2048–2058, 2005.

    Article  Google Scholar 

  13. Humphrey, J. D. Possible mechanical roles of glycosaminoglycans in the thoracic aortic dissection and associations with dysregulated transforming growth factor-β. J. Vasc. Res. 50:1–10, 2013.

    Article  CAS  PubMed  Google Scholar 

  14. Kozakova, M., C. Morizzo, C. Bianchi, M. Di Filippi, R. Miccoli, M. Paterni, V. Di Bello, and C. Palombo. Glucose-related arterial stiffness and carotid artery remodeling: a study in normal subjects and type 2 diabetes patients. J. Clin. Endocrinol. Metab. 99:2362–2366, 2014.

    Article  Google Scholar 

  15. Liu, S. Q., and Y. C. Fung. Changes in the rheological properties of blood vessel tissue remodeling in the course of development of diabetes. Biorheology. 29:443–457, 1992.

    Article  CAS  PubMed  Google Scholar 

  16. MacLean, N. F., N. L. Dudek, and M. R. Roach. The role of radial elastic properties in the development of aortic dissections. J. Vasc. Surg. 29:703–710, 1999.

    Article  CAS  PubMed  Google Scholar 

  17. Marino, M., M. I. Converse, K. L. Monson, and P. Wriggers. Molecular-level collagen damage explains softening and failure of arterial tissues: a quantitative interpretation of CHP data with a novel elasto-damage model. J. Mech. Behav. Biomed. Mater. 97:254–271, 2019.

    Article  CAS  PubMed  Google Scholar 

  18. Mohan, D., and J. W. Melvin. Failure properties of passive human aortic tissue. I-uniaxial tension tests. J. Biomech. 15:887–902, 1982.

    Article  CAS  PubMed  Google Scholar 

  19. Nadler, J. L., and L. Winer. Free radicals, nitric oxide, and diabetic complications. In: Diabetes Mellitus: A Fundamental and Clinical Text, edited by D. LeRoith, S. I. Taylor, and J. M. Olefsky. Philadelphia, PA: Lippincott-Raven Publishers, 1996, pp. 840–847.

    Google Scholar 

  20. Olsson, C., S. Thelin, E. Stahle, A. Ekbom, and A. Granath. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14000 cases from 1987 to 2006. Circulation. 14:2611–2618, 2015.

    Google Scholar 

  21. Pichamuthu, J. E., J. A. Phillippi, D. A. Cleary, D. W. Chew, J. Hempel, D. A. Vorp, and T. G. Gleason. Differential tensile strength and collagen composition in ascending aortic aneurysms by aortic valve phenotype. Ann. Thorac. Surg. 96:2147–2154, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reddy, G. K., and C. S. Enwemeka. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 29:225–229, 1996.

    Article  CAS  PubMed  Google Scholar 

  23. Reddy, J. K. Age-related cross-linking of collagen is associated with aortic wall matrix stiffness in the pathogenesis of drug-induced diabetes in rats. Microvasc. Res. 68:132–142, 2004.

    Article  PubMed  Google Scholar 

  24. Schram, M. T., R. M. Henry, R. A. van Dijk, P. J. Kostense, J. M. Dekker, G. Nijpels, R. J. Heine, L. M. Bouter, N. Westerhof, and C. D. Stehouwer. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: the Hoorn Study. Hypertension. 43:176–181, 2004.

    Article  CAS  PubMed  Google Scholar 

  25. Schriefl, A. J., G. Zeindlinger, D. M. Pierce, P. Regitnig, and G. A. Holzapfel. Determinatin of the layer-specific distributed collagen fiber orientations in human thoracic and abdominal aortas and common iliac arteries. J. R. Soc. Interface. 9:1275–1286, 2012.

    Article  PubMed  Google Scholar 

  26. Sherifova, S., G. Sommer, C. Viertler, P. Regitnig, T. Caranosos, M. A. Smith, B. E. Griffith, R. W. Ogden, and G. A. Holzapfel. Failure properties and microstrcture of healthy and aneurysmatic human thoracic aortas subjected to uniaxial extension with a focus on media. Acta. Biomater. 99:443–456, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sokolis, D. P. Three-part passive constitutive laws for the aorta in simple elongation. J. Med. Eng. Technol. 31:397–409, 2007.

    Article  CAS  PubMed  Google Scholar 

  28. Sommer, G., T. C. Gasser, P. Regitnig, M. Auer, and G. A. Holzapfel. Dissection properties of the human aortic media: an experimental study. J. Biomech. Eng. 130:2008.

    Article  PubMed  Google Scholar 

  29. Sommer, G., S. Sherifova, P. J. Oberwalder, O. E. Dapunt, P. A. Ursomanno, A. DeAnda, B. E. Griffith, and G. A. Holzapfel. Mechanical strength of aneurysmatic and dissected human thoracic aortas in different shear loading modes. J. Biomech. 49:2374–2382, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sun, H., M. Zhong, Y. Miao, X. Ma, H. P. Gong, H. W. Tan, Y. Zhang, and W. Zhang. Impaired elastic properties of the aorta in fat-fed, streptozotocin-treated rats. Vascular remodeling in diabetic arteries. Cardiology 114:107–113, 2009.

    Article  PubMed  Google Scholar 

  31. Tam, A. S. M., M. C. Sapp, and M. R. Roach. The effect of tear depth on the propagation of aortic dissection in isolated porcine thoracic aorta. J. Biomech. 31:673–676, 1998.

    Article  CAS  PubMed  Google Scholar 

  32. Tong, J., G. Sommer, P. Regitnig, and G. A. Holzapfel. Dissection properties and mechanical strength of tissue components in human carotid bifurcations. Ann. Biomed. Eng. 39:1703–1719, 2011.

    Article  PubMed  Google Scholar 

  33. Tong, J., A. J. Schriefl, T. Cohnert, and G. A. Holzapfel. Gender differences in biomechancial properties, thrombus age, mass fraction and clinical factors of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 45:364–372, 2013.

    Article  CAS  PubMed  Google Scholar 

  34. Tong, J., F. Yang, X. Li, X. Xu, and G. X. Wang. Mechanical characterization and material modeling of diabetic aortas in a rabbit model. Ann. Biomed. Eng. 46:429–442, 2018.

    Article  PubMed  Google Scholar 

  35. Tong, J., Y. F. Xin, X. Xu, F. Yang, and Z. Zhang. Effect of diabetes melitus on the dissection properties of the rabbit descending thoracic aortas. J. Biomech. 100:2020.

    Article  PubMed  Google Scholar 

  36. Tsamis, A., J. T. Krawiec, and D. A. Vorp. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J. R. Soc. Interface. 10:20121004, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Uemura, S., H. Matsushita, W. Li, A. J. Glassford, T. Asagami, K. H. Lee, D. G. Harrison, and P. S. Tsao. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ. Res. 88:1291–1298, 2001.

    Article  CAS  PubMed  Google Scholar 

  38. Van Baardwijk, C., and M. R. Roach. Factors in the propagation of aortic dissection in canine thoracic aortas. J. Biomech. 20:67–73, 1987.

    Article  PubMed  Google Scholar 

  39. Vorp, D. A., B. J. Schiro, M. P. Ehrlich, T. S. Juvonen, M. A. Ergin, and B. P. Griffith. Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann. Thorac. Surg. 800:1210–1214, 2003.

    Article  Google Scholar 

  40. Wang, Y., S. Zeinali-Davarani, E. C. Davis, and Y. Zhang. Effect of glucose on the biomechanical function of arterial elastin. J. Mech. Behav. Biomed. Mater. 49:244–254, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Weisbecker, H., D. M. Pierce, P. Regitnig, and G. A. Holzapfel. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J. Mech. Behav. Biomed. Mater. 12:93–106, 2013.

    Article  Google Scholar 

  42. Zhao, J., X. Lu, F. Zhuang, and H. Gregersen. Biomechanical and morphometric properties of the arterial wall referenced to the zero-stress state in experimental diabetes. Biorheology. 37:385–400, 2000.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (Grant No. 1500219128). The authors would like to thank Dr. Kun Li (Tongji University School of Medicine) for her help during anatomical dissection of rabbit aortas.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tong.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, J., Xu, X., Xin, Y.F. et al. Failure Properties of Healthy and Diabetic Rabbit Thoracic Aortas and Their Potential Correlation with Mass Fractions of Collagen. Cardiovasc Eng Tech 13, 69–79 (2022). https://doi.org/10.1007/s13239-021-00554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00554-7

Keywords

Navigation