Skip to main content
Log in

Scavenging processes in multicomponent medium with first-order reaction kinetics: Lagrangian and Eulerian modeling

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

A process of the removal of dissolved elements in the ocean by adsorption onto settling particulate matters (scavenging) is studied analytically and using the Lagrangian and Eulerian numerical methods. The generalized model of scavenging in a multicomponent reactive medium with first-order kinetics consisting of water and multifraction suspended particulate matter was developed. Two novel numerical schemes were used to solve the transport–diffusion–reaction equations for transport dominated flows. The particle tracking algorithm based on the method of moments was developed. The modified flux-corrected transport method for the Eulerian transport–diffusion–reaction equations is a flux-limiter method based on a convex combination of low-order and high-order schemes. The flux limiters in the developed approach are obtained as an approximate solution of a corresponding optimization problem with a linear objective function. This approach allows the construction of the flux limiters with desired properties. The similarity solutions of the model equations for an idealized case of instantaneous release of reactive radionuclide on the ocean surface were obtained. It was found analytically that the dispersion of reactive contamination caused by reversible phase transition with increase of settling velocity, concentration of particulate matter and distribution coefficient can be much greater than that caused by diffusion, whereas an increase in the desorption rate results in a decrease of the dispersion caused by the phase transfer. The solutions using both numerical schemes are consistent with the analytical similarity solution even at zero diffusivity. The scavenging of the \(^{239,240}\)Pu that was introduced to the ocean surface due to the fallout from past nuclear weapon testing was simulated. The simulation results were in agreement with the observations in the northern Pacific. It was shown that even if the concentration of the \(^{239,240}\)Pu on the particulate matter does not exceed 2% of the total concentration, settling of particulate matter plays a crucial role in the vertical transport and dispersion of the reactive radionuclide. The importance of the scavenging by both the large fast-settling particles and small particles slowly settling and dissolving with depth due to the biochemical processes was demonstrated. For large particles, the “pseudodiffusivity” caused by phase transfer was 60 times greater than the diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Tridiagonal square matrix

\({a_{ds}}\) :

Desorption rate

B :

Bi-diagonal matrix

\(C_d\) :

Concentration of the dissolved radionuclide in the water column

\(C_{p,\alpha }\) :

Concentration of radionuclide in \(\alpha \ge 2\)-th fraction of particulate matter

\(C_{p}\) :

Total concentration of radionuclide in particulate matter

\(C_{tot}\) :

Total concentration of radionuclide

D :

Diffusivity

E :

Identity matrix

\(F^L\) :

Low-order advective numerical flux

\({\varvec{g}}\) :

Vector of boundary conditions

H :

Depth of ocean

\(h^{ad}\) :

Antidiffusive flux

\(h^L\) :

Low-order numerical flux

\(h^H\) :

High-order numerical flux

i :

Notation of grid

\(K_{d,\alpha }^{}\) :

Distribution coefficient for \(\alpha \ge 2\)-th fraction of particulate matter

\(k_1\) :

Kinetic coefficient for dissolved state

\(k_2\) :

Kinetic coefficient for particulate state

\({M}_{\alpha }^{(\gamma )}\) :

Moment of order \(\gamma \)

\({\overline{M}}_{\alpha }\) :

Normalized first moment

m :

Total number of states of multicomponent medium

N :

Number of grid cells

n :

Notation of time level

\(Q^L\) :

Low-order diffusive numerical flux

\({q_d}\) :

Atmospheric deposition flux of dissolved radionuclide

\({q_{p,\alpha }}\) :

Atmospheric deposition flux of particulate radionuclide

\(P_\alpha \) :

Probability of particle to be in \(\alpha \)-th state in multicomponent medium

R :

Diagonal matrix

\(r_{\alpha \beta }\) :

Kinetic coefficients of first-order reaction terms in \(\alpha \)-th state

\(S_{p,\alpha }\) :

Concentration of \(\alpha \ge 2\)-th fraction of particulate matter

t :

Time

\({u_{p,\alpha }}\) :

Settling velocity of \(\alpha \ge 2\)-th fraction of particulate matter

\({u_{tot}}\) :

Total settling velocity of particulate matter

U :

Velocity of displacement of first moment

x :

Vertical coordinate

\(y_i^n\) :

Grid function

\(\alpha \) :

Notation of state in multicomponent medium

\(\beta \) :

Notation of state in multicomponent medium

\(\gamma \) :

Notation of moment order

\(\varDelta t\) :

Time step

\(\varDelta x_i\) :

Spacial grid size

\(\varDelta x_{i+1/2}\) :

Distance between \(x_i\) and \(x_{i+1}\)

\(\theta _1,\theta _2\) :

Temporal weighting factors between 0 and 1

\(\xi \) :

Random variable

\(\lambda \) :

Radioactivity decay constant

\(\mu ^3_\beta \) :

Third central moment

\(\sigma _{\alpha }^2\) :

Dispersion in \(\alpha \)-th state

\(\phi \) :

Radionuclide source rate

\(\varvec{\psi }\) :

Vector of flux limiters

References

  1. Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proc R Soc Lond Ser A 235:67–78

    Article  Google Scholar 

  2. Aumont O, Ethé C, Tagliabue A, Bopp L, Gehlen M (2015) PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci Model Dev 8:2465–2513. https://doi.org/10.5194/gmd-8-2465-2015

    Article  Google Scholar 

  3. Boris JP, Book DL (1973) Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J Comput Phys 11:38–69. https://doi.org/10.1016/0021-9991(73)90147-2

    Article  Google Scholar 

  4. Brovchenko I, Maderich V (2020) Modelling radionuclide scavenging in the ocean by a particle tracking in multicomponent medium with first-order reaction kinetics. In: Palagin A, Anisimov A, Morozov A, Shkarlet S (eds) Mathematical modeling and simulation of systems (MODS’2020). MODS 2020. Advances in intelligent systems and computing. Springer, Cham, vol 1265, pp 36-46. https://doi.org/10.1007/978-3-030-58124-4_4

  5. Cresswell T, Metian M, Fisher NS, Charmasson S, Hansman RL, Bam W, Bock C, Swarzenski PW (2020) Exploring new frontiers in marine radioisotope tracing: adapting to new opportunities and challenges. Front Mar Sci 7:406. https://doi.org/10.3389/fmars.2020.00406

    Article  Google Scholar 

  6. Durran DR (2010) Numerical methods for fluid dynamics. With applications to geophysics, 516. University of Washington, Springer Science, Seattle, WA

  7. Fowler SW (1997) Marine biogeochemistry of radionuclides. Strategies and Methodologies for applied marine radioactivity studies, IAEA-TRS-7. IAEA, Vienna, pp 53–82

  8. Barenblatt GI (1996) Scaling self-similarity, and intermediate asymptotics, 386. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Harten A (1983) High resolution schemes for hyperbolic conservation laws. J Comput Phys 49:357–393. https://doi.org/10.1016/0021-9991(83)90136-5

    Article  Google Scholar 

  10. Henri CV, Fernandez-Garcia D (2014) Toward efficiency in heterogeneous multispecies reactive transport modeling: a particle-tracking solution for first-order network reactions. Water Resour Res 50:7206–7230. https://doi.org/10.1002/2013WR014956

    Article  Google Scholar 

  11. Hirose K (1997) Radionuclides in the oceans, RADOC 96–97, Proc Pt 1. Radioprotection-Colloq 32:C2-225

    Google Scholar 

  12. Hirose K, Aoyama M, Povinec PP (2003) Concentration of particulate plutonium in surface and deep-water samples collected during the IAEA’97 expedition. Deep Sea Res II 50:2639–2647

    Article  Google Scholar 

  13. Hirose K, Kim CS, Yim SA, Aoyama M, Fukusawa M, Komura K, Povinec PP, Sanchez-Cabeza JA (2009) Vertical profiles of plutonium in the central South Pacific. Prog Oceanogr 89:101–107. https://doi.org/10.1016/j.pocean.2010.12.010

    Article  Google Scholar 

  14. Hunter J, Craig P, Phillips H (1993) On the use of random walk models with spatially variable diffusivity. J Comput Phys 106:366–376. https://doi.org/10.1016/S0021-9991(83)71114-9

    Article  Google Scholar 

  15. IAEA (International Atomic Energy Agency) (2004) Sediment distribution coefficients and concentration factors for biota in the marine environment, Technical Report Series No 422, IAEA, Vienna

  16. Jokulsdottir T, Archer D (2016) A stochastic, Lagrangian model of sinking biogenic aggregates in the ocean (SLAMS 1.0): model formulation, validation and sensitivity. Geosci Model Dev 9:1455–1476. https://doi.org/10.5194/gmd-9-1455-2016

    Article  Google Scholar 

  17. Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19:59–98. https://doi.org/10.1016/0045-7825(79)90034-3

    Article  Google Scholar 

  18. Kinzelbach W (1987) The random-walk-method in pollutant transport simulation. In: Custodio E et al (eds) Advances in analytical and numerical groundwater flow and quality modelling. D. Reidel, Norwell, pp 227–246

    Google Scholar 

  19. Kivva S (2020) Flux-corrected transport for scalar hyperbolic conservation laws and convection-diffusion equations by using linear programming. J Comput Phys 425:109874. https://doi.org/10.1016/j.jcp.2020.109874

  20. Kloeden PE (1992) Numerical solution of stochastic differential equations, 636. Springer, Berlin

    Book  Google Scholar 

  21. Ledwell JR, Watson AJ, Law CS (1998) Mixing of a tracer in the pycnocline. J Geophys Res 103:21499–21529. https://doi.org/10.1029/98JC01738

    Article  Google Scholar 

  22. Lindahl P, Lee SH, Worsfold P, Keith-Roach M (2010) Plutonium isotopes as tracers for ocean processes: a review. Mar Environ Res 69:73–84. https://doi.org/10.1016/j.marenvres.2009.08.002

    Article  Google Scholar 

  23. Livingston HD, Anderson RF (1983) Large particle transport of plutonium and other fallout radionuclides to the deep ocean. Nature 303:228–231. https://doi.org/10.1038/303228a0

    Article  Google Scholar 

  24. Livingston HD, Povinec PP, Ito T, Togawa Togawa O (2001) The behaviour of plutonium in the Pacific Ocean. In: Kudo A (ed) Plutonium in the environment, radioactivity in the environment. Elsevier, New York, pp 267–292

    Google Scholar 

  25. Lynch DR, Greenberg DA, Bilgili A, Mcgillicuddy DJ, Manning JP, Aretxabaleta AL (2015) Particles in the coastal ocean. Theory and applications, 545. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Maderich V, Jung KT, Brovchenko I, Kim KO (2017) Migration of radioactivity in multi-fraction sediments. Environ Fluid Mech 17(6):1207–1231. https://doi.org/10.1007/s10652-017-9545-9

    Article  Google Scholar 

  27. MARiS (Marine Information System) Radioactivity and stable isotope data in the marine environment. http://maris.iaea.org/. Last accessed 21 June 2020

  28. McDonnell AMP, Buesseler KO (2010) Variability in the average sinking velocity of marine particles. Limnol Oceanogr 55:2085–2096. https://doi.org/10.4319/lo.2010.55.5.2085

    Article  Google Scholar 

  29. Miyake Y, Sugimura Y (1968) Plutonium content in the western North Pacific waters. Pap Meteorol Geophys (Tokyo) 9(3):481–485

    Article  Google Scholar 

  30. Nakano M, Povinec PP (2003) Modelling the distribution of plutonium in the Pacific Ocean. J Environ Radioact 69:85–106. https://doi.org/10.1016/S0265-931X(03)00088-2

    Article  Google Scholar 

  31. Parzen E (1962) Stochastic processes, 343. Holden-Day, San Francisco

    Google Scholar 

  32. Periáñez R (1998) Modelling the distribution of radionuclides in deep ocean water columns. Application to H-3, Cs-137 and Pu-239, Pu-240. J Environ Radioact 38:173–194. https://doi.org/10.1016/S0265-931X(97)00029-5

    Article  Google Scholar 

  33. Periáñez R, Elliot AJ (2002) A particle-tracking method for simulating the dispersion of non-conservative radionuclides in coastal waters. J Environ Radioact 58:13–33. https://doi.org/10.1016/S0265-931X(01)00028-5

    Article  Google Scholar 

  34. Periáñez R, Brovchenko I, Jung KT, Kim KO, Maderich V (2018) The marine \(\text{ k}_d\) and water/sediment interaction problem. J Environ Radioact 129:635–647. https://doi.org/10.1016/j.jenvrad.2018.02.014

    Article  Google Scholar 

  35. Periáñez R, Bezhenar R, Brovchenko I, Duffa C, Iosjpe M, Jung KT, Kim KO, Kobayashi T, Liptak L, Little A, Maderich V, McGinnity P, Min BI, Nies H, Osvath I, Suh KS, de With G (2019) Marine radionuclide transport modelling: recent developments, problems and challenges. Environ Model Softw 122:104523. https://doi.org/10.1016/j.envsoft.2019.104523

    Article  Google Scholar 

  36. Riley JS, Sanders R, Marsay C, Le Moigne FAC, Achterberg EP, Poulton AJ (2012) The relative contribution of fast and slow sinking particles to ocean carbon export. Global Biogeochem Cycles 26:GB1026. https://doi.org/10.1029/2011GB004085

    Article  Google Scholar 

  37. Sweby PK (1984) High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21:995–1011. https://doi.org/10.1137/0721062

    Article  Google Scholar 

  38. Tsumune D, Aoyama M, Hirose K (2003) Numerical simulation of \(^{137}\)Cs and \(^{239,240}\)Pu concentrations by an ocean general circulation model. J Environ Radioact 69:61–84. https://doi.org/10.1016/s0265-931x(03)00087-0

    Article  Google Scholar 

  39. van Hulten M, Dutay JC, Roy-Barman M (2018) A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with improved particle dynamics (NEMO-ProThorP 0.1). Geosci Model Dev 11:3537–3556. https://doi.org/10.5194/gmd-11-3537-2018

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by KIOST major Project PE99812, National Research Foundation of Ukraine Project No. 2020.02/0048 and IAEA Coordinated Research Project K41017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Maderich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Procedure for solving the system of equations (48)

Appendix: Procedure for solving the system of equations (48)

We provide below a brief description of the shown in Fig. 3a procedure for solving the system of equations (48). Assume that \(\varDelta t\) satisfies the inequalities

$$\begin{aligned}&\varDelta t\mathop {\max }\limits _i \left[ {(1 - \theta _2 ){r _i} + (1 - \theta _1 ){a_{ii}}} \right] \le 1 \end{aligned}$$
(73)
$$\begin{aligned}&- (1 - \theta _1 )\;\varDelta t\;\mathop {\min }\limits _i \left[ {a_{ii-1} + a_{ii + 1}} \right] \le 1 \end{aligned}$$
(74)

where \(a_{ij}\) is calculated using relations (49)–(50). Then, to solve the system of linear equation (48) in one time step, we use the following iterative process:

Step 1.:

Initialize positive numbers \(\delta \), \(\epsilon _1 \), \(\epsilon _2 \). Set \(p=0\), \( \varvec{y^{n+1,0}} = {\varvec{y}}^n \), \( \varvec{\psi ^{n,0}=\psi ^{n+1,0}} = 0\) .

Step 2.:

Compute the \(\varvec{\psi }^{n,p+1}\) and \(\varvec{\psi }^{n+1,p+1}\) by the formulas

$$\begin{aligned} \psi _{i +1/2} = {{\left\{ \begin{array}{ll}{\min (W_i^ + ,W_{i + 1}^ - ), \quad b_{ii} > 0}\\ {\min (W_i^- ,W_{i+1}^+ ), \quad b_{ii} < 0} \end{array}\right. }} \end{aligned}$$
(75)

where \(b_{ij}\) is calculated using relations (51),

$$\begin{aligned} W_i^ \pm&= {} \min \left( 1, \frac{Q_i^ \pm }{P_i^ \pm } \right) \end{aligned}$$
(76)
$$\begin{aligned} Q_i^ +&= {} \frac{1}{\varDelta t} \left( {\mathop {\max }\limits _{j \in (i - 1,i,i + 1)} y_j^n - y_i^n} \right) + (1 - \theta _1 ) \left[ {a_{ii - 1}^n \left( {y_{i - 1}^n - y_i^n} \right) } \right. \nonumber \\&\quad+ \left. { a_{ii + 1}^n \left( {y_{i + 1}^n - y_i^n} \right) } \right] \end{aligned}$$
(77)
$$\begin{aligned} Q_i^ -&= {} \frac{1}{\varDelta t} \left( {\mathop {\min }\limits _{j \in (i - 1,i,i + 1)} y_j^n - y_i^n} \right) + (1 - \theta _1 ) \left[ {a_{ii - 1}^n\left( {y_{i - 1}^n - y_i^n} \right) } \right. \nonumber \\&\quad+ \left. { a_{ii + 1}^n\left( {y_{i + 1}^n - y_i^n} \right) }\right] \end{aligned}$$
(78)
$$\begin{aligned} P_i^ +&= {} \left[ {(1 - \theta _1 )\max \left( {0,b_{ii - 1}^n} \right) + \theta _1 \max \left( {0,b_{ii - 1}^{n + 1,p}} \right) } \right] \nonumber \\&\quad+ \left[ {(1 - \theta _1 )\max \left( {0,-b_{ii}^n} \right) + \theta _1 \max \left( {0,-b_{ii}^{n + 1,p}} \right) } \right] \end{aligned}$$
(79)
$$\begin{aligned} P_i^ -&= {} \left[ {(1 - \theta _1 )\min \left( {0,b_{ii - 1}^n} \right) + \theta _1 \min \left( {0,b_{ii - 1}^{n + 1,p}} \right) } \right] \nonumber \\&\quad+ \left[ {(1 - \theta _1 )\min \left( {0,-b_{ii}^n} \right) + \theta _1 \min \left( {0,-b_{ii}^{n + 1,p}} \right) } \right] \end{aligned}$$
(80)
Step 3.:

For the \({\varvec{\psi } ^{n,p+1}}\) and \({\varvec{\psi } ^{n+1,p+1}}\), we find \({{\varvec{y}}^{n+1,p+1}}\) from the system of linear equations

$$\begin{aligned} \begin{aligned}&\left[ {E + \varDelta t \theta _2 {R ^{n + 1}} + \varDelta t \theta _1 {A^{n + 1}}} \right] {\varvec{y}}^{n+1,p+1} \\&\quad =\left[ {E - \varDelta t(1 - \theta _2 ){R ^n} - \varDelta t\,(1 - \theta _1 ){A^n}} \right] {\varvec{y}}^n \\&\qquad - \varDelta t \left( (1 - \theta _1 ){B^n}\varvec{\psi } ^{n,p + 1} + \theta _1 {B^{n + 1,p}}\varvec{\psi } ^{n+1,p+1} \right) \\&\qquad + \varDelta t \left( {\varvec{g}}^{(\theta _1 ),n} + \varvec{\varphi }^{(\theta _2 ),n} \right) \end{aligned} \end{aligned}$$
(81)
Step 4.:

Algorithm stop criterion

$$\begin{aligned} \begin{aligned}&\mathop {\max } \limits _i \frac{{\left| {y_i^{n+1,p+1} - y_i^{n+1,p}} \right| }}{{\max \left( {\delta ,\left| {y_i^{n+1,p+1}} \right| } \right) }}< {\varepsilon _1}, \quad \mathop {\max } \limits _i \left| {\psi _{i +1/2}^{n+1,p+1} - \psi _{i +1/2}^{n+1,p}} \right|< {\varepsilon _2} \quad \mathrm{and} \\&\mathop {\max } \limits _i \left| {\psi _{i +1/2}^{n,p + 1} - \psi _{i +1/2}^{n,p}} \right| < {\varepsilon _2} \end{aligned} \end{aligned}$$
(82)

If conditions (82) hold, then \({\varvec{y}}^{n+1} = {{\varvec{y}}^{n+1,p+1}}\). Otherwise, \(p = p + 1\) and go to Step 2.

Remark. Note that under restriction (73), the difference scheme (46) is monotone and it satisfies the local maximum principle for \(\varDelta t\) from (74) [19].

In the calculations, we can use the following second- or third-order advective and diffusive numerical fluxes

$$\begin{aligned} F_{i +1/2}^{H2}&= {} \frac{1}{2}{u_{p,i +1/2}} \; (y_i + y_{i+1}) \end{aligned}$$
(83)
$$\begin{aligned} F_{i +1/2}^{H3}&= {} u_{p,i +1/2}^ + {y_i} + u_{p,i +1/2}^ - {y_{i+1}} + \left[ {\frac{3}{8} \left| {u_{p,i +1/2}} \right| (y_{i+1} -y_i) } \right. \nonumber \\&\quad+ \left. { \frac{1}{8}u_{p,i +1/2}^ + (y_i - y_{i-1}) - \frac{1}{8}u_{p,i +1/2}^ - (y_{i+2} - y_{i+1})} \right] \end{aligned}$$
(84)
$$\begin{aligned} Q_{i +1/2}^{H3}&= {} \frac{D_{i +1/2}}{\varDelta _{i +1/2}x} \left[ {y_{i + 1} - {y_i} + \frac{1}{24}(y_{i-1} - y_{i+2}) + \frac{1}{8}(y_{i+1} - y_i)} \right] \end{aligned}$$
(85)

The numerical flux \(F_{i + {1/2}}^{H2}\) has second-order accuracy in space at \({x_{i + {1/2}}}\). The numerical flux \(F_{i + {1/2}}^{H3}\) is the QUICK numerical flux [17] and it has third-order accuracy in space on a uniform mesh at \({x_{i + {1/2}}}\). The numerical flux \(Q_{i + {1/2}}^{H3}\) is also third-order accuracy.

The corresponding antidiffusive fluxes second- and third-order accuracies are of the form

$$\begin{aligned}&\begin{aligned} h_{i +1/2}^{ad2}&= F_{i +1/2}^{H2} + Q_{i +1/2}^L - F_{i +1/2}^L - G_{i + 1/2}^L \\&\quad= - \min \left( {0,\frac{D_{i +1/2}}{\varDelta _{i +1/2}x} - \frac{\left| {u_{p,i +1/2}} \right| }{2}} \right) (y_{i+1} - y_i) \end{aligned} \end{aligned}$$
(86)
$$\begin{aligned}&\begin{aligned} h_{i +1/2}^{ad3}&= F_{i +1/2}^{H3} + Q_{i +1/2}^{H3} - F_{i +1/2}^L - G_{i + 1/2}^L \\&\quad= - \min \left( {0,\frac{D_{i +1/2}}{\varDelta _{i +1/2}x} - \frac{\left| {u_{p,i +1/2}} \right| }{2}} \right) (y_{i + 1} - y_i) \\&\quad\quad + \frac{1}{8} \left[ {-\left| {u_{p,i +1/2}} \right| (y_{i + 1} - y_i) + u_{p,i +1/2}^ + (y_i -y_{i-1}) - u_{p,i +1/2}^ - (y_{i+2} - y_{i+1})} \right] \\&\quad\quad - \frac{D_{i +1/2}}{\varDelta _{i +1/2}x} \left[ {\frac{1}{24}(y_{i-1} - y_{i+2}) + \frac{1}{8}(y_{i+1} -y_i)} \right] \end{aligned} \end{aligned}$$
(87)

In the numerical solution of the system of Eqs. (1)–(2) \(\varphi \) in (31) is a function of \(C_d\) and \(C_{p,i}\). In this case, Eqs. (1)–(2) are solved sequentially by a simple iterative method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maderich, V., Kim, K.O., Brovchenko, I. et al. Scavenging processes in multicomponent medium with first-order reaction kinetics: Lagrangian and Eulerian modeling. Environ Fluid Mech 21, 817–842 (2021). https://doi.org/10.1007/s10652-021-09799-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-021-09799-1

Keywords

Navigation