Skip to main content
Log in

Performance evaluation of interphase transformers based on a new 48-pulse AC–DC converter for industrial applications

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper evaluates the performance of two arrangements of interphase transformers using a new AC–DC 48-pulse converter (SC-48P) for industrial applications with high currents in the order of hundreds of kiloamperes, so that consumers and other loads connected to the SC-48P electrical grid are not affected by the harmful effects caused by harmonic currents injected into the grid by converters. The prototype uses a \(7.5^{\circ }\) and 4 kVA-220/220 V three-phase phase-shifting autotransformer and two groups of 24-pulse converters, each containing two 2 kVA-220/180/180 V identical three-phase three-winding non-conventional transformers with four 6-pulse converter bridges connected in parallel. The methodology for calculating the inductance for each IPT is given using the mathematical formulation of AC currents established and processed using the MathCad software. Computational simulations in normal and degraded modes were conducted in MATLAB/Simulink to prove the prototype’s performance in terms of harmonic distortion and reliability, considering only three operational scenarios. The SC-48P was experimentally tested using available laboratory resources to validate the research. The obtained results meet IEEE-519 requirements and confirm the viability and applicability of the proposed converter in industrial rectification systems in terms of power quality improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Singh B, Gairola S, Singh BN, Chandra A, Al-Haddad K (2008) Multipulse AC-DC Converters for improving power quality: a review. IEEE Trans Power Electron 23:260–281. https://doi.org/10.1109/TPEL.2007.911880

    Article  Google Scholar 

  2. Yang T, Bozhko S, Asher G (2014) Functional modeling of symmetrical multipulse autotransformer rectifier units for aerospace applications. IEEE Trans Power Electron 30:4704–4713. https://doi.org/10.1109/TPEL.2014.2364682

    Article  Google Scholar 

  3. Solanki J, Fröhleke N, Böcker J, Averberg A, Wallmeier P (2015) High-current variable-voltage rectifiers: state of the art topologies. IET Power Electron 8:1068–1080. https://doi.org/10.1049/iet-pel.2014.0533

    Article  Google Scholar 

  4. Gao L, Xu X, Man Z, Lee J (2018) A 36-pulse diode-bridge rectifier using dual passive harmonic reduction methods at dc link. IEEE Trans Power Electron 34:1216–1226. https://doi.org/10.1109/TPEL.2018.2835511

    Article  Google Scholar 

  5. Kalpana R, Singh B, Bhuvaneswari G et al (2017) A 20-pulse asymmetric multiphase staggering autoconfigured transformer for power quality improvement. IEEE Trans Power Electron 33:917–925. https://doi.org/10.1109/TPEL.2017.2721958

    Article  Google Scholar 

  6. Sandoval JJ, Krishnamoorthy HS, Enjeti PN, Choi S (2016) Reduced active switch front-end multipulse rectifier with medium-frequency transformer isolation. IEEE Trans Power Electron 32:7458–7468. https://doi.org/10.1109/TPEL.2016.2632717

    Article  Google Scholar 

  7. Meng F, Gao L, Yang S, Yang W (2015) Effect of phase-shift angle on a delta-connected autotransformer applied to a 12-pulse rectifier. IEEE Trans Ind Electron 62:4678–4690. https://doi.org/10.1109/TIE.2015.2405058

    Article  Google Scholar 

  8. Abdollahi R, Gharehpetian GB (2016) Inclusive design and implementation of novel 40-pulse AC-DC converter for retrofit applications and harmonic mitigation. IEEE Trans Ind Electron 63:667–677. https://doi.org/10.1109/TIE.2015.2481364

    Article  Google Scholar 

  9. Yang S, Wang J, Yang W (2017) A novel 24-pulse diode rectifier with an auxiliary single-phase full-wave rectifier at dc side. IEEE Trans Power Electron 32:1885–1893. https://doi.org/10.1109/TPEL.2016.2560200

    Article  Google Scholar 

  10. Kalpana R, Chethana KS, Singh B et al (2018) Power quality enhancement using current injection technique in a zigzag configured autotransformer-based 12-pulse rectifier. IEEE Trans Indus Appl 54:5267–5277. https://doi.org/10.1109/TIA.2018.2851566

    Article  Google Scholar 

  11. Meng F, Xu X, Gao L (2017) A simple harmonic reduction method in multipulse rectifier using passive devices. IEEE Trans Indus Inform 13:2680–2692. https://doi.org/10.1109/TII.2017.2723602

    Article  Google Scholar 

  12. Meng F, Yang W, Yang S, Gao L (2015) Active harmonic reduction for 12-pulse diode bridge rectifier at DC side with two-stage auxiliary circuit. IEEE Trans Indus Inform 11:64–73. https://doi.org/10.1109/TII.2014.2363522

    Article  Google Scholar 

  13. Meng F, Xu X, Gao L, Man Z, Cai X (2018) Dual passive harmonic reduction at dc link of the double-star uncontrolled rectifier. IEEE Trans Indus Electron 66:3303–3309. https://doi.org/10.1109/TIE.2018.2844840

    Article  Google Scholar 

  14. Young CM, Wu SF, Yeh WS, Yeh CW (2013) A DC-side current injection method for improving AC line condition applied in the 18-pulse converter system. IEEE Trans Indus Electron 29:99–109. https://doi.org/10.1109/TPEL.2013.2248067

    Article  Google Scholar 

  15. Lian Y, Yang S, Yang W (2019) Optimum design of 48-pulse rectifier using unconventional interphase reactor. IEEE Access 7:61240–61250. https://doi.org/10.1109/ACCESS.2019.2902453

    Article  Google Scholar 

  16. Wu B, Narimani M (2017) High-power converters and AC drives, 76–78. John Wiley & Sons, https://ieeexplore.ieee.org/book/7823162

  17. Francis R, Meganathan D (2019) A dual-mode cascaded H-bridge multilevel inverter for improving THD. Elect Eng 101:225–237. https://doi.org/10.1007/s00202-019-00768-y

    Article  Google Scholar 

  18. Kunzler LM, Lopes LAC (2021) A novel algorithm for increased power balance in cascaded H-bridge multilevel cells in a hybrid power amplifier. Elect Eng 103:551–562. https://doi.org/10.1007/s00202-020-01102-7

    Article  Google Scholar 

  19. Ogoulola CEG, Rezek AJJ, Fifatin F et al (2020) An alternative proposal for HVDC transmission systems using 24-pulse AC/DC converters based on three-winding non-conventional transformers. Electric Power Syst Res 182:106230–106240. https://doi.org/10.1016/j.epsr.2020.106230

    Article  Google Scholar 

  20. Rezek AJJ, Ogoulola CEG, de Abreu JP, et al., (2016) Winding turns calculus methodology for a new 48 pulse multiconverter system employing lower cost three winding special transformers, 17th International Conference on Harmonics and Quality of Power (ICHQP). IEEE, 18–23. https://doi.org/10.1109/ICHQP.2016.7783414

  21. Williams BW (2006) Principles and elements of power electronics, 456–458. Devices, Drivers, Applications and Passive Components, http://personal.strath.ac.uk/barry.williams/book.htm

  22. Sefa I, Altin N (2009) A novel approach to determine the interphase transformer inductance of 18 pulse rectifiers. Energy Conv Manag 50:2495–2503. https://doi.org/10.1016/j.enconman.2009.05.015

    Article  Google Scholar 

  23. Monroy AO (2013) Study of polyphase rectifier circuits with suitable performance for power network of aircrafts (in French). Master dissertation, Laval University. http://hdl.handle.net/20.500.11794/24252

  24. Duffey CK, Stratford RP (1989) Update of harmonic standard IEEE-519: IEEE recommended practices and requirements for harmonic control in electric power systems. IEEE Trans Indus Appl 25:1025–1034. https://doi.org/10.1109/PCICON.1988.22445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christel Enock Ghislain Ogoulola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogoulola, C.E.G., Rezek, A.J.J., Fifatin, Fx. et al. Performance evaluation of interphase transformers based on a new 48-pulse AC–DC converter for industrial applications. Electr Eng 104, 763–779 (2022). https://doi.org/10.1007/s00202-021-01329-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01329-y

Keywords

Navigation