Skip to main content
Log in

Numerical Simulation of Tsunami Coastal Amplitudes in the Pacific Coast of Mexico Based on Non-Uniform \(k^{-2}\) Slip Distributions

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Three seismic gaps lie along the Pacific Coast of Mexico, the Tehuantepec, Guerrero, and Colima–Jalisco gaps. In the Tehuantepec seismic gap, there has not been a \(M>7\) earthquake since 1902 until the \(M_{w}=8.2\) in 2017 which was an intraplate event. Furthermore, there has not been significant seismic activity in the Guerrero gap for over fifty years; therefore, it is considered as potentially likely to produce a major event. Based on historical seismicity and the National Seismological Service of Mexico’s earthquakes catalog, the last major earthquake in the Colima–Jalisco gap struck in 1995 with \(M_{w}=8.0\). To better understand the tsunami hazards due to the generation of near-field tsunamis in Mexico, in this work we characterize hypothetical events of magnitudes \(M_{w}=8.0\), \(M_{w}=8.2\), and \(M_{w}=8.2\) in the Tehuantepec, Guerrero, and Colima–Jalisco gaps, respectively. We generated 99 earthquakes with stochastic \(k^{-2}\) finite fault slip distributions and one earthquake with uniform slip distribution at each seismic gap. The non-planar geometry of the megathrust for each rupture area was taken into account. For each seismic gap, we compute the vertical co-seismic displacement by adding up the contribution from all point sources distributed over a grid mesh on each of the faults. Under the passive tsunami generation assumption, we simulated the tsunami wave-field propagation to obtain the coastal amplitude along the Pacific coast of Mexico. The numerical results show likely maximum peak amplitudes of \(\sim 8\) m, \(\sim 14\) m, and \(\sim 15\) m, in Tehuantepec, Guerrero, and Colima–Jalisco gaps, respectively. The uniform slip distribution assumption over stochastic scenarios shows an average underestimation factor of 1.3 for the three seismic gaps. While our computations were carried out carefully and accurately, our models have limitations. Thus, our results cannot be used as an authoritative tsunami hazard assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availablity of data and material

Not applicable.

Code application

This work was done using Matlab.

References

  • Abe, K., Hakuno, M., Takeuchi, M., & Katada, T. (1986). Survey report on the tsunami of the Michoacan, Mexico earthquake of September 19, 1985. Bulletin of Earthquake Research Institute, 61, 475–481.

    Google Scholar 

  • Aki, K. (1967). Scaling law of seismic spectrum. Journal of Geophysical Research, 72(4), 1217–1231.

    Article  Google Scholar 

  • Andrews, D. J. (1980). A stochastic fault model: 1. Static case. Journal of Geophysical Research: Solid Earth, 85(B7), 3867–3877.

    Article  Google Scholar 

  • Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., et al. (2009). Global bathymery and elevation data at 30 arc seconds resolution. Marine Geodesy, 32(4), 355–371.

    Article  Google Scholar 

  • Blaser, L., Krüger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of the Seismological Society of America, 100(6), 2914–2926.

    Article  Google Scholar 

  • Borerro, J., Ortiz, M., Titov, V., & Synolakis, C. (1997). Field survey of Mexican tsunami produces new data, unusual photos. Eos, Transactions American Geophysical Union, 78(8), 85–88.

    Article  Google Scholar 

  • Corona, N., & Ramírez-Herrera, M. T. (2012). Mapping and historical reconstruction of the great Mexican 22 June 1932 tsunami. Natural Hazards and Earth System Sciences, 12(5), 1337–1352.

    Article  Google Scholar 

  • Corona, N., & Ramírez-Herrera, M. T. (2015). Did an underwater landslide trigger the June 22, 1932 tsunami off the Pacific coast of Mexico? Pure and Applied Geophysics, 172(12), 3573–3587.

    Article  Google Scholar 

  • Cruz-Atienza, V. M., Ito, Y., Kostoglodov, V., Hjörleifsdóttir, V., Iglesias, A., Tago, J., et al. (2018). A seismogeodetic amphibious network in the Guerrero seismic gap, Mexico. Seismological Research Letters, 89(4), 1435–1449.

    Article  Google Scholar 

  • Farreras, S. (1997). Tsunamis en Mexico. In Contribuciones a la Oceanografia Fisica en Mexico, Monografia No. 3 (pp. 73–96). Union Geofisica Mexicana.

  • Franco, A., Lasserre, C., Lyon-Caen, H., Kostoglodov, V., Molina, E., Guzman-Speziale, M., et al. (2012). Fault kinematics in northern Central America and coupling along the subduction interface of the Cocos Plate, from GPS data in Chiapas (Mexico), Guatemala and El Salvador. Geophysical Journal International, 189(3), 1223–1236.

    Article  Google Scholar 

  • Fuentes, M., Riquelme, S., Hayes, G., Medina, M., Melgar, D., Vargas, G., et al. (2016). A study of the 2015 M w 8.3 Illapel earthquake and tsunami: Numerical and analytical approaches. Pure and Applied Geophysics, 173, 1847–1858.

    Article  Google Scholar 

  • Fujii, Y., Satake, K., Sakai, S. I., Shinohara, M., & Kanazawa, T. (2011). Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth, Planets and Space, 63(7), 815–820.

    Article  Google Scholar 

  • Gallovic F., & Brokesová, J. (2004). On strong ground motion synthesis with \(k^{-2}\) slip distributions. Journal of Seismology,8(2), 211–224.

  • García, V., & Suárez, G. (1996). Los Sismos en la Historia de México. México: Universidad Nacional Autónoma de México Press.

    Google Scholar 

  • Geist, E. L. (2002). Complex earthquake rupture and local tsunamis. Journal of Geophysical Research, 107(B5), 2086.

    Article  Google Scholar 

  • Geist, E. L., & Dmowska, R. (1999). Local tsunamis and distributed slip at the source. Seismogenic and tsunamigenic processes in shallow subduction zones (pp. 485–512). Basel: Birkhauser.

    Chapter  Google Scholar 

  • Gripp, A. E., & Gordon, R. G. (2002). Young tracks of hotspots and current plate velocities. Geophysical Journal International, 150(2), 321–361.

    Article  Google Scholar 

  • Gusman, A. R., Mulia, I. E., & Satake, K. (2018). Optimum sea surface displacement and fault slip distribution of the 2017 Tehuantepec earthquake (Mw 8.2) in Mexico estimated from tsunami waveforms. Geophysical Research Letters, 45(2), 646–653.

    Article  Google Scholar 

  • Hayes, G. (2018). Slab2—A comprehensive subduction zone geometry model. Science, 362(6410), 10–58.

    Article  Google Scholar 

  • Herrero, A., & Bernard, P. (1994). A kinematic self-similar rupture process for earthquakes. Bulletin of the Seismological Society of America, 84(4), 1216–1228.

    Article  Google Scholar 

  • Ide, S., Baltay, A., & Beroza, G. C. (2011). Two faces of the great Tohoku earthquake: Shallow dynamic overshoot and energetic deep rupture. Science, 332(6036), 1426–1429.

    Article  Google Scholar 

  • Kostoglodov, V., & Pacheco, J. F. (1999). One hundred years of seismicity in Mexico. Inst. de Geofisica., Universidad Nacional Autonoma de Mexico (UNAM), Mexico City.

  • Lay, T., Ammon, C. J., Kanamori, H., Xue, L., & Kim, M. J. (2011). Possible large near-trench slip during the 2011 \(M_{w}\) 9.0 off the Pacific coast of Tohoku earthquake. Earth Planets and Space, 63, 32.

    Article  Google Scholar 

  • Lay, T., Ye, L., Kanamori, H., Yamazaki, Y., Cheung, K. F., & Ammon, C. J. (2013). The February 6, 2013 Mw 8.0 Santa Cruz Islands earthquake and tsunami. Tectonophysics, 608, 1109–1121.

    Article  Google Scholar 

  • Mai, P. M., & Beroza, G. C. (2002). A spatial random field model to characterize complexity in earthquake slip. Journal Geophysical Research, 107(B11), 2308.

    Article  Google Scholar 

  • Melgar, D., Allen, R. M., Riquelme, S., Geng, J., Bravo, F., Baez, J. C., et al. (2016). Local tsunami warnings: Perspectives from recent large events. Geophysical Research Letters, 43(3), 1109–1117.

    Article  Google Scholar 

  • Melgar, D., Ruiz-Angulo, A., Garcia, E. S., Manea, M., Manea, V. C., Xu, X., et al. (2018). Deep embrittlement and complete rupture of the lithosphere during the M w 8.2 Tehuantepec earthquake. Nature Geoscience, 11(12), 955–960.

    Article  Google Scholar 

  • Melgar, D., Williamson, A. L., & Salazar-Monroy, E. F. (2019). Differences between heterogenous and homogenous slip in regional tsunami hazards modelling. Geophysical Journal International, 219(1), 553–562.

    Google Scholar 

  • Melgar, D., Ruiz-Angulo, A., Pérez-Campos, X., Crowell, B. W., Xu, X., Cabral-Cano, E., et al. (2021). Energetic Rupture and Tsunamigenesis during the 2020 M w 7.4 La Crucecita, Mexico earthquake. Seismological Society of America, 92(1), 140–150.

    Google Scholar 

  • Moreno, M., Rosenau, M., & Oncken, O. (2010). 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature, 467(7312), 198–202.

    Article  Google Scholar 

  • Núñez-Cornú, F. J., Sandoval, J. M., Alarcón, E., Gómez, A., Suárez-Plascencia, C., Núñez, D., & Zúñiga-Medina, L. M. (2018). The Jalisco seismic accelerometric telemetric network (RESAJ). Seismological Research Letters, 89(2A), 363–372.

    Article  Google Scholar 

  • Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040.

    Article  Google Scholar 

  • Okal, E. A., & Borrero, J. C. (2011). The ‘tsunami earthquake’ of 1932 June 22 in Manzanillo, Mexico: seismological study and tsunami simulations. Geophysical Journal International, 187(3), 1443–1459.

    Article  Google Scholar 

  • Ortiz, M., Singh, S. K., Pacheco, J., & Kostoglodov, V. (1998). Rupture length of the October 9, 1995 Colima–Jalisco Earthquake (Mw 8) estimated from tsunami data. Geophysical Research Letters, 25(15), 2857–2860.

    Article  Google Scholar 

  • Ortiz, M., Kostoglodov, V., Singh, S. K., & Pacheco, J. (2000). New constraints on the uplift of October 9, 1995 Jalisco–Colima earthquake (\(M_{w} 8.0\)) based on the analysis of tsunami records at Manzanillo and Navidad, Mexico. Geofísica Internacional, 39(4), 349–357.

    Article  Google Scholar 

  • Pardo, M., & Suárez, G. (1995). Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications. Journal of Geophysical Research: Solid Earth, 100(B7), 12357–12373.

    Article  Google Scholar 

  • Plafker, G. (1997). Catastrophic tsunami generated by submarine slides and backarc thrusting during the 1992 earthquake on eastern Flores I., Indonesia. Geological Society of America Cordillera Section, 29(5), 57.

    Google Scholar 

  • Poisson, B., Oliveros, C., & Pedreros, R. (2011). Is there a best source model of the Sumatra 2004 earthquake for simulating the consecutive tsunami? Geophysical Journal International, 185(3), 1365–1378.

    Article  Google Scholar 

  • Ramírez-Herrera, M. T., Corona, N., & Suárez, G. A. (2015). Review of Great Magnitude Earthquakes and associated tsunamis along the Guerrero, Mexico Pacific Coast: A multiproxy approach (pp. 165–176). Geophysical Research Letters.

  • Ramírez-Herrera, M. T., Corona, N., Ruiz-Angulo, A., Melgar, D., & Zavala-Hidalgo, J. (2018). The 8 September 2017 tsunami triggered by the Mw 8.2 intraplate earthquake, Chiapas, Mexico. Pure and Applied Geophysics, 175(1), 25–34.

    Article  Google Scholar 

  • Ramírez-Herrera, M. T., Corona, N., Cerny, J., Castillo-Aja, R., Melgar, D., Lagos, M., et al. (2020). Sand deposits reveal great earthquakes and tsunamis at Mexican Pacific Coast. Scientific Reports, 10(1), 1–10.

    Article  Google Scholar 

  • Riquelme, S., Schwarze, H., Fuentes, M., & Campos, J. (2020). Near-field effects of earthquake rupture velocity into tsunami runup heights. Journal of Geophysical Research: Solid Earth, 125(6), e2019JB018946.

    Google Scholar 

  • Rosenau, M., Nerlich, R., Brune, S., & Oncken, O. (2010). Experimental insights into the scaling and variability of local tsunamis triggered by giant subduction megathrust earthquakes. Journal of Geophysical Research: Solid Earth,115(B9).

  • Ruíz, J., Baumont, D., Bernard, P., & Berge-Thierry, C. (2007). New approach in the kinematic \(k^{-2}\) source model for generating physical slip velocity functions. Geophysical Journal International, 171(2), 739–754.

    Google Scholar 

  • Ruíz, J. A., Fuentes, M., Riquelme, S., Campos, J., & Cisternas, A. (2015). Numerical simulation of tsunami runup in northern Chile based on non-uniform \(k^{-2}\) slip distributions. Natural Hazards, 79(2), 1177–1198.

    Article  Google Scholar 

  • Sánchez, A. J., & Farreras, S. F. (1993). Catalog of Tsunamis on the Western Coast of Mexico (p. 79). Boulder: National Geophysical Data Center.

    Google Scholar 

  • Santos-Reyes, J. (2020). The Risk of Tsunamis in Mexico. In: Natural Hazards-Impacts, Adjustments and Resilience: IntechOpen.

  • Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang, J., Jiang, J., et al. (2011). The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries. Science, 332(6036), 1421–1425.

    Article  Google Scholar 

  • Singh, S. K., Astiz, L., & Havskov, J. (1981). Seismic gaps and recurrence periods of large earthquakes along the Mexican subduction zone: A reexamination. Bulletin of the Seismological Society of America, 71(3), 827–843.

    Article  Google Scholar 

  • Singh, S. K., Pacheco, J. F., & Shapiro, N. (1998). The earthquake of 16 November, 1925 (\(M_{s}=7.0\)) and the reported tsunami in Zihuatanejo, Mexico. Geofísica Internacional, 37(1), 0.

    Article  Google Scholar 

  • Smith, W. H. T., & Sandwell, T. D. (1997). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956.

    Article  Google Scholar 

  • Suárez, G., & Albini, P. (2009). Evidence for great tsunamigenic earthquakes (M 8.6) along the Mexican subduction zone. Bulletin of the Seismological Society of America, 99(2A), 892–896.

    Article  Google Scholar 

  • Synolakis, C. E., Bernard, E. N., Titov, V. V., Kânoğlu, U. T. K. U., & Gonzalez, F. I. (2008). Validation and verification of tsunami numerical models. Tsunami science four years after the 2004 Indian Ocean tsunami (pp. 2197–2228). Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Trejo-Gómez, E., Ortíz, M., & Núñez-Cornú, F. J. (2015). Source Model of the October 9, 1995 Jalisco–Colima Tsunami as constrained by field survey reports, and on the numerical simulation of the tsunami. Geofísica Internacional, 54(2), 149–159.

    Article  Google Scholar 

  • Williamson, A., Melgar, D., & Rim, D. (2019). The effect of earthquake kinematics on tsunami propagation. Journal of Geophysical Research: Solid Earth, 124(11), 11639–11650.

    Article  Google Scholar 

  • Yagi, Y., & Fukahata, Y. (2011). Rupture process of the 2011 Tohoku–Oki earthquake and absolute elastic strain release. Geophysical Research Letters,38(19).

  • Yamazaki, Y., & Cheung, K. F. (2011). Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake. Geophysical Research Letters,38(12).

  • Yamazaki, Y., Cheung, K. F., & Kowalik, Z. (2011a). Depth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up. International Journal for Numerical Methods in Fluids, 67, 2081–2107.

    Article  Google Scholar 

  • Yamazaki, Y., Lay, T., Cheung, K. F., Yue, H., & Kanamori, H. (2011b). Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake. Geophysical Research Lettetrs,38(7).

  • Yamazaki, Y., Kowalik, Z., & Cheung, K. F. (2009). Depth-integrated, non-hydrostatic model for wave breaking and run-up. International Journal for Numerical Methods in Fluids, 61(5), 473–497.

    Article  Google Scholar 

  • Yoshida, K., Miyakoshi, K., & Irikura, K. (2011). Source process of the 2011 off the Pacific coast of Tohoku earthquake inferred from waveform inversion with long-period strong-motion records. Earth Planets and Space, 63(7), 577–582.

    Article  Google Scholar 

Download references

Acknowledgements

Some figures were drawn using Generic Mapping Tools (GMT) version 4.0 (Wessel and Smith 1998). This work was funded by Secretaría de Educación Pública (SEP) under the program Métodos de Investigación. We also thank Dr. Yoshiki Yamazaki who facilitated the use of his code, NEOWAVE.

Funding

This work was funded by Secreataría de Educación Pública, México (SEP). This Mexican government agency afforded the flights, lodging, and food for Luis Vazquez in Santiago, Chile. This award is assigned to undergrad students at Universidad Nacional Autónoma de México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Vazquez.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez, L., Medina, M., Riquelme, S. et al. Numerical Simulation of Tsunami Coastal Amplitudes in the Pacific Coast of Mexico Based on Non-Uniform \(k^{-2}\) Slip Distributions. Pure Appl. Geophys. 178, 3291–3312 (2021). https://doi.org/10.1007/s00024-021-02796-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02796-x

Keywords

Navigation