Skip to main content

Advertisement

Log in

New insights into the autecology of the two sympatric fish species Notothenia coriiceps and N. rossii from western Antarctic Peninsula: A trophic biomarkers approach

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Biomarker analysis, especially fatty acids (FA) and stable isotopes (SI), has become a useful tool to elucidate the flow of energy and trophic interactions in an ecosystem and to analyse the diet of species that are hard to observe whilst feeding. Herein we compare FA profiles and SI composition (nitrogen, δ15N and carbon, δ13C) of muscle tissue from two sympatric Antarctic fish species—Notothenia rossii and N. coriiceps—that are key components in the inshore ecosystem of the South Shetland Islands. For both nototheniids, potential benthic food sources (algae, amphipods, polychaetes and gastropods) were screened in order to re-evaluate their trophic position (TP) and the energy flow. Significant differences in FA and SI composition between the two fish species were found. Notothenia rossii showed a higher total FA concentration, with high levels of polyunsaturated FA. Conversely, the potential food sources tested showed low concentrations of these FAs. This could indicate that both nototheniids are feeding mainly on another food source or that FA bioconversion takes place. While the FA results might suggest a possible trophic niche segregation between N. rossii and N. coriiceps, both species occupy a similar trophic position. Furthermore, we found a 50-times higher total concentration of monounsaturated FA in N. rossii than in N. coriiceps that can be related to the higher buoyancy capacity of the former. Trophic biomarkers did not elucidate the main prey item as lipid source for N. rossii and N. coriiceps, suggesting that other food sources and potential fatty acid bioconversion should be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

source assimilate in the diet of each species. The box is built around the 25th and 75th quartiles, thereby representing 50% of the solutions; the centreline in the box indicates the median of all solutions

Similar content being viewed by others

Availability of data and material

All data generated or analysed during this study are included in this published article [and its supplementary information files].

Code availability

Not applicable.

References

  • Abdulkadir S, Tsuchiya M (2008) One-step method for quantitative and qualitative analysis of fatty acids in marine animal samples. J Exp Mar Biol Ecol 354:1–8

    Article  CAS  Google Scholar 

  • Ainley DG, Pauly D (2014) Fishing down the food web of the Antarctic continental shelf and slope. Polar Rec 50:92–107

    Article  Google Scholar 

  • Alurralde G, Fuentes VL, De Troch M, Tatián M (2020) Suspension feeders as natural sentinels of the spatial variability in food sources in an Antarctic fjord: A stable isotope approach. Ecol Indic 115:106378. https://doi.org/10.1016/j.ecolind.2020.106378

    Article  CAS  Google Scholar 

  • Barlow KE, Croxall JP (2002) Seasonal and interannual variation in foraging range and habitat of macaroni penguins Eudyptes chrysolophus at South Georgia. Mar Ecol Prog Ser 232:291–304

    Article  Google Scholar 

  • Barrera-Oro ER (2002) The role of fish in the Antarctic marine food web: differences between inshore and offshore waters in the southern Scotia Arc and west Antarctic Peninsula. Antarct Sci 14:293–309

    Article  Google Scholar 

  • Barrera-Oro ER (2003) Analysis of dietary overlap in Antarctic fish (Notothenioidei) from the South Shetland Islands: no evidence of food competition. Polar Biol 26:631–637

    Article  Google Scholar 

  • Barrera-Oro E (2015) Impact of the finfish fishery in the South Shetland Islands/Antarctic Peninsula region. Journal of Antarctic Affairs 2:7–19

    Google Scholar 

  • Barrera-Oro E, Marschoff E, Ainley D (2017) Changing status of three notothenioid fish at the South Shetland Islands (1983–2016) after impacts of the 1970–80s commercial fishery. Polar Biol 40:2047–2054. https://doi.org/10.1007/s00300-017-2125-0

    Article  Google Scholar 

  • Barrera-Oro E, Moreira E, Seefeldt M, Valli Francione M, Quartino ML (2019) The importance of macroalgae and associated amphipods in the selective benthic feeding of sister rockcod species Notothenia rossii and N. coriiceps (Nototheniidae) in West Antarctica. Polar Biol 42:317–334. https://doi.org/10.1007/s00300-018-2424-0

    Article  Google Scholar 

  • Barrera-Oro ER, Winter DJ (2008) Age composition and feeding ecology of early juvenile Notothenia rossii (Pisces, Nototheniidae) at Potter Cove, South Shetland Islands, Antarctica. Antarct Sci 20:339–341

    Article  Google Scholar 

  • Bearhop S, Adams CE, Waldron S, Fuller RA, Macleod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012

    Article  Google Scholar 

  • CCAMLR (Convention for the Conservation of Antarctic Marine Living Resources) (2017) Schedule of Conservation Measures in Force 2016/17. Hobart, Australia: CCAMLR, 306 pp. Access: www.ccamlr.org.

  • CCAMLR (Convention for the Conservation of Antarctic Marine Living Resources) (2019) Report of the thirty-eight meeting of the Scientific Committee (SC-CAMLR XXXVIII). Hobart, Australia. Access: www.ccamlr.org.

  • Casaux RJ, Mazzotta AS, Barrera-Oro ER (1990) Seasonal aspects of the biology and diet of nearshore nototheniid fish at Potter Cove, South Shetland Islands, Antarctica. Polar Biol 11:63–72

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth

  • Constable AJ, Melbourne-Thomas J, Corney SP, Arrigo KR, Barbraud C, Barnes DKA, Bindoff NL, Boyd PW, Brandt A, Costa DP, Davidson AT, Ducklow HW, Emmerson L, Fukuchi M, Gutt J, Hindell MA, Hofmann EE, Hosie GW, Iida T, Jacob S, Johnston NM, Kawaguchi S, Kokubun N, Koubbi P, Lea MA, Makhado A, Massom RA, Meiners K, Meredith MP, Murphy EJ, Nicol S, Reid K, Richerson K, Riddle MJ, Rintoul SR, Smith WO, Southwell C, Stark JS, Sumner M, Swadling KM, Takahashi KT, Trathan PN, Welsford DC, Weimerskirch H, Westwood KJ, Wienecke BC, Wolf-Gladrow D, Wright SW, Xavier JC, Ziegler P (2014) Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob Chang Biol 20:3004–3025

    Article  PubMed  Google Scholar 

  • Collins MA, Brickle P, Brown J, Belchier M (2010) The Patagonian Toothfish: Biology, ecology and fishery. Adv Mar Biol 58:227–300

    Article  PubMed  Google Scholar 

  • Corsolini S, Borghesi N (2017) A comparative assessment of fatty acids in Antarctic organisms from the Ross Sea: Occurrence and distribution. Chemosphere 174:747–753. https://doi.org/10.1016/j.chemosphere.2017.02.031

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard J, St. John M, Kattner G, Müller-Navarra D, HagenW, (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    Article  PubMed  Google Scholar 

  • De Troch M, Boeck P, Cnudde C, Van Gansbeke D, Vanreusel A, Vincx M, Caramujo MJ (2012) Bioconversion of fatty acids at the basis of marine food webs: insights from a compound-specific stable isotope analysis. Mar Ecol Prog Ser 465:53–67. https://doi.org/10.3354/meps09920

    Article  CAS  Google Scholar 

  • DeWitt H, Heemstra P, Gon O (1990) Nototheniidae. In: Gon O, Heemstra P (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 279–331

  • Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystems: the West Antarctic Peninsula. Philos Trans R Soc Lond B 362:67–94

    Article  Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107

    Article  Google Scholar 

  • Eastman JT, Barrera-Oro E, Moreira E (2011) Adaptive radiation at a low taxonomic level: divergence in buoyancy of the ecologically similar Antarctic fish Notothenia coriiceps and N. rossii. Mar Ecol Prog Ser 438:195–206

    Article  Google Scholar 

  • Everson I, Parkes G, Kock KH, Boyd IL (1999) Variation in standing stock of the mackerel icefish Champsocephalus gunnari at South Georgia. J Appl Ecol 36:591–603

    Article  Google Scholar 

  • Eggers T, Hefin Jones T (2000) You are what you eat…or are you? Trends Ecol Evol 15(7):265–266. https://doi.org/10.1016/S0169-5347(00)01877-2

    Article  CAS  PubMed  Google Scholar 

  • Farkas T, Herodek S (1964) The effect of environmental temperature on the fatty acid composition of crustacean plankton. J Lipid Res 5:369–373

    Article  CAS  PubMed  Google Scholar 

  • Fischer W, Hureau JC (eds) (1985) FAO species identification sheets for fishery purposes. Southern Ocean (Fishing areas 48, 58 and 88) (CCAMLR Conservation Area), Vol 2. FAO, Rome, pp 233–470

  • Fry B (2006) Using stable isotope tracers. In: Stable isotope ecology. Springer, New York, NY. https://doi.org/10.1007/0-387-33745-8_3

  • Fry B, Sherr EB (1984) d13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib Mar Sci 27:13–47

    CAS  Google Scholar 

  • Gambi MC, Castelli A, Guizzardi M (1997) Polychaete populations of the shallow soft bottoms off Terra Nova Bay (Ross Sea, Antarctica): distribution, diversity and biomass. Polar Biol 17:199–210. https://doi.org/10.1007/s003000050123

    Article  Google Scholar 

  • Gon O, Heemstra PC (eds) (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, RSA, p 462

  • Hazel JR, Sidell BD (2004) The substrate specificity of hormonesensitive lipase from adipose tissue of the Antarctic fish Trematomus newnesi. J Exp Biol 207:897–903

    Article  CAS  PubMed  Google Scholar 

  • Hobson KA, Schell DM, Renouf D, Noseworthy E (1996) Stable carbon and nitrogen isotopic fractionation between diet and tissues of captive seals: implications for dietary reconstructions involving marine mammals. Canadian J Fish Aquat Sci 53:528–533

    Article  Google Scholar 

  • Hureau JC (1994) The significance of fish in the marine Antarctic ecosystems. Polar Biol 14:307–313

    Article  Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J Anim Ecol. 80(3):595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x

    Article  PubMed  Google Scholar 

  • Jia Z, Swadling KM, Meiners KM, Kawaguch S, Virtue P (2016) The zooplankton food web under East Antarctic pack ice - A stable isotope study. Deep Sea Res II Top Stud Oceanogr 131:189–202. https://doi.org/10.1016/j.dsr2.2015.10.010

    Article  CAS  Google Scholar 

  • Juares MA (2013) Biología reproductiva y ecología trófica de dos especies simpátricas del género Pygoscelis en las Islas Shetland del Sur, Antártida. Tesis Doctoral. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina. http://hdl.handle.net/10915/27166

  • Kamler E, Krasicka B, Rakusa-Suszczewski S (2001) Comparison of lipid content and fatty acid composition in muscle and liver of two notothenioid fishes from Admiralty Bay (Antarctica): an eco-physiological perspective. Polar Biol 24:735. https://doi.org/10.1007/s003000100275

    Article  Google Scholar 

  • Kelly JR, Scheibling RE (2012) Fatty acids as dietary tracers in benthic food webs. Mar Ecol Prog Ser 446:1–22

    Article  CAS  Google Scholar 

  • Kock KH (1992) Antarctic fish and fisheries. Cambridge University Press, Cambridge

    Google Scholar 

  • Kock K-H, Kellermann A (1991) Reproduction in Antarctic notothenioid fish. Antarct Sci 3:125–150

    Article  Google Scholar 

  • Kock KH, Appel J, Busch M, Klimpel S, Holst M, Pietschok D, Pshenichnov LV, Riehl R, Schöling S (2007) Composition and standing stock estimates of finfish from the Polarstern bottom trawl survey around Elephant island and the South Shetland Islands (subarea 48.1, 19 December 2006 to 3 january 2007). Comm. Conserv. Antarct. Mar. Liv. Res., Doc. WG-FSA-07/22. Hobart, Australia

  • Kröger K, Rowden AA (2008) Polychaete assemblages of the northwestern Ross Sea shelf: worming out the environmental drivers of Antarctic macrobenthic assemblage composition. Polar Biol 1(31):971–989. https://doi.org/10.1007/s00300-008-0437-9

    Article  Google Scholar 

  • Lewis RW (1962) Temperature and pressure effects on the fatty acids of some marine ectotherms. Comp Biochem Physiol 6:75–89

    Article  CAS  Google Scholar 

  • McCutchan JH Jr, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390

    Article  CAS  Google Scholar 

  • Marina TI, Salinas V, Cordone G, Campana G, Moreira E, Deregibus D, Torre L, Sahade R, Tatian M, Barrera-Oro E, De Troch M, Doyle S, Quartino ML, Saravia L, Momo FR (2018) The food web of Potter Cove (Antarctica): complexity, structure and function. Estuar Coast Shelf Sci 200:141–151. https://doi.org/10.1016/j.ecss.2017.10.015

    Article  Google Scholar 

  • Marschoff ER, Barrera Oro ER, Alescio NS, Ainley DG (2012) Slow recovery of previously depleted demersal fish at the South Shetland Islands, 1983–2010. Fish Res 125–126:206–213

    Article  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604

    Article  Google Scholar 

  • Meredith M, Sommerkorn M, Cassotta S, Derksen C, Ekaykin A, Hollowed A, Kofinas G, Mackintosh A, Melbourne-Thomas J, Muelbert MMC, Ottersen G, Pritchard H, Schuur EAG (2019) Polar Regions. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds.) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/07_SROCC_Ch03_FINAL.pdf.

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relations between d15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Article  CAS  Google Scholar 

  • Moreira E, Juáres M, Barrera-Oro E (2014) Dietary overlap among early juvenile stages in an Antarctic notothenioid fish assemblage at Potter Cove, South Shetland Islands. Polar Biol 37:1507–1515. https://doi.org/10.1007/s00300-014-1545-3

    Article  Google Scholar 

  • Moreira E (2015) Ictiofauna Antártica: Ecología de estadíos juveniles de especies del Suborden Notothenioidei de Caleta Potter, Isla 25 de Mayo. Tesis Doctoral. FCNyM, Universidad Nacional de la Plata. http://sedici.unlp.edu.ar/handle/10915/50216

  • Moreno CA, Osorio HH (1977) Bathymetric food habit changes in the Antarctic fish Notothenia gibberifrons Lonnberg (Pisces: Nototheniidae). Hydrobiol 55:139–144

    Article  Google Scholar 

  • Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436

    Article  Google Scholar 

  • Newton J (2010) Stable isotope ecology. In: Encyclopedia of life sciences (ELS). Wiley, Chichester

  • Park HJ, Yeon I, Han E, Lee YJ, Hanchet SM, Baeck GW, Kwon Y, Choi SG, Lee DW, Kang CK (2015) Diet study of Antarctic toothfish caught in the east Antarctic based on stomach content, fatty acid and stable isotope analyses. CCAMLR Sci 22:29–44

    Google Scholar 

  • Parrish CC, Myher JJ, Kuksis A, Angel A (1997) Lipid structure of rat adipocyte plasma membranes following dietary lard and fish oil. Biochim Biophys Acta 1323:253e262

    Article  Google Scholar 

  • Pasotti F, Saravia LA, De Troch M, Tarantelli MS, Sahade R, Vanreusel A (2015) Benthic trophic interactions in an antarctic shallow water ecosystem affected by recent glacier retreat. PLoS ONE 10(11):e0141742. https://doi.org/10.1371/journal.pone.0141742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinkas LM, Oliphant S, Iverson ILK (1971) Food habits of albacore, bluefin tuna and bonito in Californian waters. Calif Fish Game 152:1–105

    Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    Article  PubMed  Google Scholar 

  • Rau GH, Mearns AJ, Young DR, Olson RJ, Schafer HA, Kaplan IR (1983) Animal 13C/12C correlates with trophic level in pelagic food webs. Ecology 64:1314–1318

    Article  Google Scholar 

  • Reid K (2002) Growth rates of Antarctic fur seals as indices of environmental conditions. Mar Mammal Sci 18:469–482

    Article  Google Scholar 

  • Ruiz-Barlett E, Sierra M, Costa A, Tosonotto G (2021) Interannual variability of hydrographic properties in Potter Cove during summers between 2010 and 2017. Antarct Sci. https://doi.org/10.1017/S0954102020000668

    Article  Google Scholar 

  • Sahade R, Lagger C, Torre L, Momo F, Monien P, Schloss I, Barnes D, Servetto N, Tarantelli S, Tatián M, Zamboni N, Abele D (2015) Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv 1:e1500050

    Article  PubMed  PubMed Central  Google Scholar 

  • Schloss I, Abele D, Moreau S, Demers S, Bers V, González O, Ferreyra G (2012) Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove (Antarctica). J Marine Syst 92:53–66

    Article  Google Scholar 

  • Servetto N, Rossi S, Fuentes V, Alurralde G, Lagger C, Sahade R (2017) Seasonal trophic ecology of the dominant Antarctic coral Malacobelemnon daytoni (Octocorallia, Pennatulacea, Kophobelemnidae). Mar Environ Res 130:264–274

    Article  CAS  PubMed  Google Scholar 

  • Smith RC, Ainley D, Baker K, Domack E, Emslie S, Fraser B, Kennet J, Leventer A, Mosley-Thompson E, Stammerjohn S, Vernet M (1999) Marine ecosystem sensitivity to climate change. Bioscience 49(5):393–404

    Article  Google Scholar 

  • Smith RC, Stammerjohn SE, Baker KS (1996) Surface air temperature variations in the western Antarctic Peninsula Region. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for ecological research west of Antarctic Peninsula. Antarctic Research Series Vol 70. pp 105–121

  • Sweeting CJ, Jennings S, Polunin NVC (2005) Variance in isotopic signatures as a descriptor of tissue turnover and degree of omnivory. Functional Ecol 19(5):777–784. https://doi.org/10.1111/j.1365-2435.2005.01019.x

    Article  Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:247–274

    Article  Google Scholar 

  • Wada E, Mizutani H, Minagawa M (1991) The use of stable isotopes for food web analysis. Crit Rev Food Sci Nutr 30(4):361–371. https://doi.org/10.1080/10408399109527547

    Article  CAS  PubMed  Google Scholar 

  • Zenteno L, Cárdenas L, Valdivia N, Gómez I, Höfer J, Garrido I, Pardo LM (2019) Unraveling the multiple bottom-up supplies of an Antarctic nearshore benthic community. Prog Oceanogr 174:55–63. https://doi.org/10.1016/j.pocean.2018.10.016

    Article  Google Scholar 

  • Zukowski C (1980) Catches of fishes of the genus Notothenia and Trematomus at Admiralty Bay (King George Island, South Shetland Islands) in the winter-spring season, 1977. Pol Polar Res 1:163–167

    Google Scholar 

Download references

Acknowledgements

We thank Carlos Bellisio and Dirk Van Gansbeke for their technical support. We gratefully acknowledge Dr. Emilio Riginella as well as two anonymous reviewers for helpful comments on the manuscript. The research leading to results presented in this publication was carried out with infrastructure funded by EMBRC Belgium—FWO agreement 20151029-03, Hercules agreement 20140910-03. The present manuscript also presents an outcome of the EU research network IMCONet funded by the Marie Curie Action International Research Staff Exchange Scheme (FP7 IRSES, Action No. 319718). This study also was supported by grants from Dirección Nacional del Antártico, Instituto Antártico Argentino (PICTA 0100), PIP 2017-2019 GI 11220170100219CO Resolution 2018-8-APN-DIR#CONICET and PICT 2018-03310, Resolution 401/19. Likewise, the project was partially supported by Antarctic Wildlife Research Fund: AWR Project 12.

Funding

This work was supported by grants from Dirección Nacional del Antártico, Instituto Antártico Argentino [Grant number PICTA 0100], Consejo Nacional de Investigaciones Científicas y Técnicas [Grant number PIP2017-2019: 11220170100219CO, Resolution 2018–8-APN-DIR#CONICET] and Fondo para la Investigación Científica y Tecnológica [Grant number PICT 2018:03310, Resolution 401/19], Marie Curie Action International Research Staff Exchange Scheme (FP7 IRSES, Action No. 319718) and Antarctic Wildlife Research Fund: AWR Project 12.

Author information

Authors and Affiliations

Authors

Contributions

EM, EBO and MDT conceived the project and secured funding for the study. EM conducted fieldwork and carried out laboratory work. EM, MN and GA performed statistical analyses. EM, EBO and MN led the writing of the manuscript with contributions from MDT, KM and GA. Each author contributed significantly to the edition of the final manuscript.

Corresponding author

Correspondence to Esteban Barrera-Oro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Consent to participate

The authors declare consent to participate.

Consent for publication

The authors declare consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, E., Novillo, M., Mintenbeck, K. et al. New insights into the autecology of the two sympatric fish species Notothenia coriiceps and N. rossii from western Antarctic Peninsula: A trophic biomarkers approach. Polar Biol 44, 1591–1603 (2021). https://doi.org/10.1007/s00300-021-02903-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-021-02903-7

Keywords

Navigation