Skip to main content
Log in

Study of the Characteristics of the Positive Column of a Direct Current Glow Discharge in Xenon

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Experimental and theoretical studies of plasma parameters of the positive column of a direct current glow discharge in xenon were carried out. In the experiments, a discharge tube with a radius of 2 cm and a distance between the electrodes of 56 cm was used. The experiments were carried out for the gas pressure of 0.1 and 1 Torr, and the discharge current was varied in the range of 10–50 mA. The electric field strength in the positive column of the discharge and the population of the lower metastable 1s5 state of the xenon atom (the population is measured only for the pressure of 0.1 Torr) on the axis of the discharge tube are measured. A self-consistent 0-dimensional kinetic model of the discharge in xenon was developed and verified by comparing the calculation results with the data published in literature. Calculations performed for the above experimental conditions showed that the theoretical values of electric field strength differ markedly from the measured ones. Possible reasons for this difference are discussed. It is shown, in particular, that at the reduced electric field, which is implemented in the discharge plasma at a pressure of 1 Torr, the electron–electron collisions significantly affect the shape of the electron energy distribution function and, accordingly, the rate of the processes of production and loss of electrons. Concerning the population of the lower metastable level of the Xe atom, the calculated values agree well with the results of measurements. Within the developed discharge model, the emission spectrum of the discharge plasma in the range of 119–3400 nm is also calculated. It is shown that most of the energy is emitted in the UV region at a wavelength of 147 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. Uhrlandt, R. Bussiahn, S. Gorchakov, H. Lange, D. Loffhagen, and D. Nötzold, J. Phys. D: Appl. Phys. 38, 3318 (2005).

    Article  ADS  Google Scholar 

  2. D. Hayashi, G. Heusler, G. Hagelaar, and G. Kroesen, J. Appl. Phys. 95, 1656 (2004).

    Article  ADS  Google Scholar 

  3. A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, J. Phys. D: Appl. Phys. 51, 045201 (2018).

  4. Y. Chiu, B. L. Austin, S. Williams, R. A. Dressler, and G. F. Karabadzhak, J. Appl. Phys. 99, 113304 (2006).

  5. G. F. Karabadzhak, Y. Chiu, and R. A. Dressler, J. Appl. Phys. 99, 113305 (2006).

  6. Yu. B. Golubovskii, S. Gorchakov, H. Lange, A. Timofeev, D. Uhrlandt, and J. Winter, J. Phys. D: Appl. Phys. 45, 055205 (2012).

  7. D. A. Zayarnyi, L. V. Semenova, N. N. Ustinovskii, I. V. Kholin, and A. Yu. Chugunov, Quantum Electron. 28, 221 (1998).

    Article  ADS  Google Scholar 

  8. L. V. Semenova, N. N. Ustinovskii, and I. V. Kholin, Quantum Electron. 34, 189 (2004).

    Article  ADS  Google Scholar 

  9. W. Wieme and J. Lenaerts, J. Chem. Phys. 72, 2708 (1980).

    Article  ADS  Google Scholar 

  10. A. von Engel, Ionized Gases (Clarendon, Oxford, 1965).

    Book  Google Scholar 

  11. V. S. Egorov, Yu. B. Golubovski, E. Kindel, I. B. Mekhov, and C. Schimke, Phys. Rev. E 60, 5971 (1999).

    Article  ADS  Google Scholar 

  12. T. Kaneda, T. Kubota, and J.-S. Chang, Jpn. J. Appl. Phys. 28, 947 (1989).

    Article  ADS  Google Scholar 

  13. T. Kaneda, T. Kubota, and J.-S. Chang, J. Phys. D: Appl. Phys. 23, 500 (1990).

    Article  ADS  Google Scholar 

  14. T. A. Dote, Jpn. J. Appl. Phys. 7, 964 (1968).

    Article  ADS  Google Scholar 

  15. J.-S. Chang and J. G. Laframboise, J. Phys. D: Appl. Phys. 9, 1699 (1976).

    Article  ADS  Google Scholar 

  16. Spectroscopy of Gas-Discharge Plasmas, Ed. by S. E. Frish (Nauka, Leningrad, 1970) [in Russian].

    Google Scholar 

  17. G. M. Grigorian, N. A. Dyatko, and I. V. Kochetov, J. Phys. D: Appl. Phys. 48, 445201 (2015).

  18. V. N. Babichev, A. V. Dem’yanov, N. A. Dyatko, A. F. Pal’, A. N. Starostin, and A. V. Filippov, Plasma Phys. Rep. 43, 515 (2017).

    Article  ADS  Google Scholar 

  19. S. Gortchakov, H. Lange, and D. Uhrlandt, J. Appl. Phys. 93, 9508 (2003).

    Article  ADS  Google Scholar 

  20. S. Nakazaki, K. A. Berrington, W. B. Eissner, and Y. Itikawa, J. Phys. B: At., Mol. Opt. Phys. 30, 5805 (1997).

    Article  ADS  Google Scholar 

  21. H. Deutsch, K. Becker, S. Matt, and T. D. Märk, J. Phys. B: At., Mol. Opt. Phys. 32, 4249 (1999).

    Article  ADS  Google Scholar 

  22. L. Vriens and A. H. M. Smeets, Phys. Rev. A 22, 940 (1980).

    Article  ADS  Google Scholar 

  23. R. O. Jung, J. B. Boffard, L. W. Anderson, and C. C. Lin, Phys. Rev. A 72, 022723 (2005).

  24. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1997).

  25. M. A. Biondi and L. M. Chanin, Phys. Rev. 94, 910 (1954).

    Article  ADS  Google Scholar 

  26. N. A. Dyatko, I. V. Kochetov, and A. P. Napartovich, Plasma Sources Sci. Technol. 23, 043001 (2014).

  27. E. A. Bogdanov, A. A. Kudryavtsev, L. D. Tsendin, R. R. Arslanbekov, V. I. Kolobov, and V. V. Kudryavtsev, Tech. Phys. 49, 698 (2004).

    Article  Google Scholar 

  28. J. H. Ingold, in Electron Kinetics and Applications of Glow Discharges (NATO Science Series: B, Vol. 367), Ed. by U. Kortshagen and L. D. Tsendin (Springer, Boston, MA, 2002).

  29. E. A. Bogdanov, A. A. Kudryavtsev, L. D. Tsendin, R. R. Arslanbekov, and V. I. Kolobov, Tech. Phys. 49, 849 (2004).

    Article  Google Scholar 

  30. G. M. Grigorian, N. A. Dyatko, and I. V. Kochetov, Plasma Phys. Rep. 41, 434 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-02-00270).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Demyanov or I. V. Kochetov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorian, G.M., Demyanov, A.V., Dyatko, N.A. et al. Study of the Characteristics of the Positive Column of a Direct Current Glow Discharge in Xenon. Plasma Phys. Rep. 47, 588–597 (2021). https://doi.org/10.1134/S1063780X21060064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21060064

Keywords:

Navigation