Skip to main content
Log in

Propagation of Microplasma Discharge over Titanium Surface Covered with Thin Dielectric Film

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Propagation and structure of the pulsed microplasma discharge initiated on the titanium sample surface covered with a thin dielectric film with a thickness of approximately 10 nm was studied experimentally. The discharge duration was 100 μs; the amplitude of the discharge electric current was 200 A. The microplasma discharge was initiated by the plasma flow with wide aperture, a plasma density of 2 × 1013 cm–3 and pulse duration of 25 μs. It was visually found that, on the macroscale, the microplasma discharge glow has a branched structure of the dendrite type, which, on the microscale, it consists of a large number of brightly glowing “point” formations, namely, cathode spots localized on the metal surface. The interaction of microplasma discharge with the titanium sample results in erosion of its surface. In this case, the erosion structure is visually “identical” to the structure of the discharge glow and consists of a large number of individual microcraters with characteristic sizes from 0.3 to 10 microns, localized on the metal surface within an area of ≈1 cm2. On the macroscale, the entire set of microcraters forms a branched structure of the dendrite type. It was ascertained that the microplasma discharge propagates over the titanium surface covered with a thin dielectric film at an average velocity of 70 m/s. Moreover, the microplasma discharge propagation has a “jumping” character: the plasma of “immovable” burning cathode spots initiates the excitation of new cathode spots at distances of 3–30 microns from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. A. Ivanov, A. S. Sakharov, and M. E. Konyzhev, Plasma Phys. Rep. 34, 150 (2008). https://doi.org/10.1134/S1063780X08020074

    Article  ADS  Google Scholar 

  2. V. A. Ivanov, A. S. Sakharov and M. E. Konyzhev, in 2008 23rd International Symposium on Discharges and Electrical Insulation in Vacuum, Vol. 2, p. 575. https://doi.org/10.1109/DEIV.2008.4676859

  3. V. A. Ivanov, M. E. Konyzhev, L. I. Kuksenova, V. G. Lapteva, A. S. Sakharov, A. A. Dorofeyuk, T. I. Kamolova, S. N. Satunin, and A. A. Letunov, Plasma Phys. Rep. 37, 1230 (2011). https://doi.org/10.1134/S1063780X11060109

    Article  ADS  Google Scholar 

  4. V. A. Ivanov, M. E. Konyzhev, L. I. Kuksenova, V. G. Lapteva, A. S. Sakharov, T. I. Kamolova, A. A. Dorofeyuk, and S. N. Satunin, Plasma Phys. Rep. 36, 1241 (2010). https://doi.org/10.1134/S1063780X10130258

    Article  ADS  Google Scholar 

  5. V. A. Ivanov, M. E. Konyzhev, L. I. Kuksenova, V. G. Lapteva, and I. A. Khrennikova, J. Fric. Wear 30, 290 (2009). https://doi.org/10.3103/S1068366609040114

    Article  Google Scholar 

  6. V. A. Ivanov, A. S. Sakharov, and M. E. Konyzhev, Plasma Phys. Rep. 42, 619 (2016). https://doi.org/10.1134/S1063780X16060039

    Article  ADS  Google Scholar 

  7. M. D. Stamate, Appl. Surf. Sci. 218, 318 (2003). https://doi.org/10.1016/S0169-4332(03)00624-X

    Article  ADS  Google Scholar 

  8. I. Oja, A. Mere, M. Krunks, R. Nisumaa, C.-H. Solterbeck, and M. Ec-Souni, Thin Solid Films 515, 674 (2006). https://doi.org/10.1016/j.tsf.2005.12.243

    Article  ADS  Google Scholar 

  9. V. A. Ivanov, A. S. Sakharov, M. E. Konyzhev, T. I. Kamolova, A. A. Dorofeyuk, and L. I. Kuksenova, J. Phys.: Conf. Ser. 907, 012023 (2017). https://doi.org/10.1088/1742-6596/907/1/012023

  10. V. A. Ivanov, M. E. Konyzhev, L. I. Kuksenova, V. G. Lapteva, and I. A. Khrennikova, J. Mach. Manuf. Reliab. 44, 384 (2015). https://doi.org/10.3103/S1052618815040032

    Article  Google Scholar 

  11. V. A. Ivanov, M. E. Konyzhev, L. I. Kuksenova, V. G. Lapteva, M. S. Alekseeva, I. A. Khrennikova, A. A. Letunov, A. S. Sakharov, T. I. Kamolova, A. A. Dorofeyuk, and S. N. Satunin, Plasma Phys. Rep. 38, 1105 (2012). https://doi.org/10.1134/S1063780X12080144

    Article  ADS  Google Scholar 

  12. V. A. Ivanov, L. I. Kuksenova, V. G. Lapteva, and M. E. Konyzhev, J. Mach. Manuf. Reliab. 37, 278 (2008). https://doi.org/10.3103/S1052618808030126

    Article  Google Scholar 

  13. D. A. Dimitrovich, A. I. Bychkov, and V. A. Ivanov, Prikl. Fiz., No. 2, 35 (2009).

  14. N. M. Pultsin, The Interaction of Titanium with Gases (Metallurgy, Moscow, 1969) [in Russian].

    Google Scholar 

  15. L'oxidation des métaux, sous la direction de J. Bénard (Gauthier-Villars, Paris, 1964), Vol. 2.

  16. V. A. Ivanov, L. I. Kuksenova, V. G. Lapteva, and M. E. Konyzhev, J. Mach. Manuf. Reliab. 36, 569 (2007). https://doi.org/10.3103/S1052618807060118

    Article  Google Scholar 

  17. V. A. Ivanov, Kratk. Soobshch. Fiz., No. 6, 33 (1988).

  18. V. A. Ivanov, Preprint No. 85-1 (Zentralinstitut für Electronenphysik, Akademie der Wissenshaften der DDR, Berlin, 1985).

  19. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys (Butterworths, London, 1962).

    Google Scholar 

  20. G. A. Mesyats, Phys.–Usp. 38, 567 (1995). https://doi.org/10.1070/PU1995v038n06ABEH000089

    Article  Google Scholar 

  21. G. A. Mesyats, IEEE Trans. Plasma Sci. 23, 879 (1995). https://doi.org/10.1109/27.476469

    Article  ADS  Google Scholar 

  22. G. A. Mesyats, IEEE Trans. Plasma Sci. 41, 676 (2013). https://doi.org/10.1109/TPS.2013.2247064

    Article  ADS  Google Scholar 

  23. G. Mesyats, J. Phys. IV 07 (C4), C4-93 (1997).

    Google Scholar 

  24. A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation (Springer Series on Atomic, Optical, and Plasma Physics, Vol. 50) (Springer, New York, 2008).

  25. Vacuum Arcs: Theory and Application, Ed. by J. M. Lafferty (Wiley, New York, 1980).

    Google Scholar 

  26. G. A. Mesyats and D. I. Proskurovsky, Pulsed Electrical Discharge in Vacuum (Nauka, Novosibirsk, 1984; Springer-Verlag, Berlin, 1989).

  27. V. A. Ivanov, B. Jüttner, and H. Pursch, in Proceedings 11th International Symposium on Discharges and Electrical Insulation in Vacuum, 1984 (Institute of Electrical and Electronics Engineers, Academy of Sciences of the German Democratic Republic, Berlin, 1984), Vol. 1, p. 157.

  28. V. A. Ivanov, B. Jüttner, and H. Pursch, IEEE Trans. Plasma Sci. 13, 334 (1985). https://doi.org/10.1109/TPS.1985.4316432

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ivanov.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.A., Konyzhev, M.E., Kamolova, T.I. et al. Propagation of Microplasma Discharge over Titanium Surface Covered with Thin Dielectric Film. Plasma Phys. Rep. 47, 603–610 (2021). https://doi.org/10.1134/S1063780X21060076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21060076

Key words:

Navigation