Skip to main content
Log in

Preferential adsorption of CO2 on cobalt ferrite sites and its role in oxidative dehydrogenation of ethylbenzene

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The role and the preferred form of CO2 adsorption in the oxidative dehydrogenation of ethylbenzene to styrene on a CoFe2O4–MCM-41 surface were investigated. It was observed from XRD, Mossbauer and magnetic results that the cobalt ferrite was maintained when the reaction was performed in the presence of CO2 and it was reduced in tests carried out in the absence of CO2, showing that CO2 has the role of regenerating the lattice oxygen and iron species of spinel, consuming H2 through the reverse water–gas-shift reaction. Thermogravimetric analyses showed that the reaction in the presence of CO2 deposited less coke compared to the test in the absence of CO2, confirming the role of CO2 in oxidation of deposited carbon through gasification of coke and the Boudouard reaction. The proposed mechanism shows that adsorption of CO2 occurs preferentially at the O2−–Fe3+–O2− octahedral sites as bicarbonate, according to TPD-CO2 and FTIR-CO2 results, where C from carbon dioxide interacts with lattice oxygen (O2−) and the oxygen from CO2 interacts with the acid site (Fe3+). The formation of a bridged bicarbonate structure on the ferrite surface occurs through a proton transfer and an intermolecular process involving the coadsorption of hydroxyl and/or carbonate groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  • Ansari MB, Park SE (2012) Carbon dioxide utilization as a soft oxidant and promoter in catalysis. Energy Environ Sci 5:9419

    Article  CAS  Google Scholar 

  • Baltrusaitis J, Grassian VH (2006) Surface reactions of carbon dioxide at the adsorbed water-iron oxide interface. J Phys Chem B 109:12227–12230

    Article  CAS  Google Scholar 

  • Baltrusaitis J, Jensen JH, Grassian VH (2006) FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3. J Phys Chem B 110:12005–12016

    Article  CAS  PubMed  Google Scholar 

  • Baltrusaitis J, Schuttlefield J, Zeitler E, Grassian VH (2011) Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem Eng J 170:471–481

    Article  CAS  Google Scholar 

  • Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernandez JR, Ferrari MC, Gross R, Hallett JP (2014) Carbon capture and storage update. Energy Environ Sci 7(1):130–189

    Article  CAS  Google Scholar 

  • Braga TP, Campos Sales BM, Pinheiro AN, Herrera WT, Baggio-Saitovitch E, Valentini A (2011) Catalytic properties of cobalt and nickel ferrites dispersed in mesoporous silicon oxide for ethylbenzene dehydrogenation with CO2. Catal Sci Technol 1:1383–1392

    Article  CAS  Google Scholar 

  • Braga TP, Pinheiro AN, Leite ER, dos Santos RCR, Valentini A (2015) Cu, Fe, or Ni doped molybdenum oxide supported on Al2O3 for the oxidative dehydrogenation of ethylbenzene. Chin J Catal 36:712–720

    Article  CAS  Google Scholar 

  • Breyer C, Reichert D, Seidel J, Hüttl R, Mertens F, Kureti S (2015) Kinetic modeling of the adsorption and desorption of CO2 on α-Fe2O3. Phys Chem Chem Phys 17:27011–27018

    Article  CAS  PubMed  Google Scholar 

  • Cavani F, Trifiro F (1995) Alternative processes for the production of styrene, alternative processes for the production of styrene. Appl Catal A Gen 133:219–239

    Article  CAS  Google Scholar 

  • Chen L, Zhu Q, Hao Z, Zhang T, Xie Z (2010) Development of a Co-Ni bimetallic aerogel catalyst for hydrogen production via methane oxidative CO2 reforming in a magnetic assisted fluidized bed. Int J Hydrog Energy 35:502

    Article  Google Scholar 

  • Chen Y, Choi S, Thompson LT (2015) Low-temperature CO2 hydrogenation to liquid products via a heterogeneous cascade catalytic system. ACS Catal 5:1717–1725

    Article  CAS  Google Scholar 

  • Chen S, Xu Z, Tan D, Pan D, Cui X, Qiao Y, Li R (2019) Oxidative dehydrogenation of ethylbenzene to styrene with CO2 over Al-MCM-41-supported vanadia catalysts. Appl Organometal Chem 35:5396

    Google Scholar 

  • Chung YM, Kwon YT, Kim TJ, Lee SJ, Oh SH (2009a) Factors affect on the reaction performance of the oxidative dehydrogenation of n-butene to 1,3-butadiene over Zn-ferrite catalysts. Catal Lett 130:417–423

    Article  CAS  Google Scholar 

  • Chung YM, Kwon YT, Kim TJ, Lee SJ, Oh SH (2009b) Prevention of catalyst deactivation in the oxidative dehydrogenation of n-butene to 1,3-butadiene over Zn-ferrite catalysts. Catal Lett 131:579–586

    Article  CAS  Google Scholar 

  • Coenen K, Gallucci F, Mezari B, Hensen E, Annaland M (2018) An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites. J CO2 Util 24:228–239

    Article  CAS  Google Scholar 

  • Di Cosimo LI, Dıez VK, Xu M, Iglesia E, Apesteguıa CR (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 178:499–510

    Article  Google Scholar 

  • Emamian HR, Honarbakhsh-raouf A, Ataie A, Yourdkhani A (2009) Synthesis and magnetic characterization of MCM-41/CoFe2O4 nano-composite. J Alloy Compd 480:681–683

    Article  CAS  Google Scholar 

  • Fan M, Wang J, Ettema R, Northam MA, Hansen AC, Argyle MD, Shen Y, Radosz M (2010) Application of green chemistry in energy production. J Phys Chem A 114:3743–3743

    Article  CAS  Google Scholar 

  • Freire RM, Sousa FF, Pinheiro AL, Longhinotti E, Filho JM, Oliveira AC, Freire PTC, Ayala AP, Oliveira AC (2009) Studies of catalytic activity and coke deactivation of spinel oxides during ethylbenzene dehydrogenation. App Catal A Gen 359:165–179

    Article  CAS  Google Scholar 

  • Gnanakumar ES, Chandran N, Kozhevnikov IV, Grau-Atienza A, Fernández EVR, Sepulveda-Escribano A, Shiju NR (2019) Highly efficient nickel-niobia composite catalysts for hydrogenation of CO2 to methane. Chem Eng Sci 194:2–9

    Article  CAS  Google Scholar 

  • Gomez SS, McMillan L, McGregor J, Zeitler JA, Al-Yassir N, Al-Khattaf S, Gladden LF (2015) A new perspective on catalytic dehydrogenation of ethylbenzene: the influence of side-reactions on catalytic performance. Catal Sci Technol 5:3782–3797

    Article  Google Scholar 

  • Guileraa J, del Valle J, Alarcóna A, Díaza JA, Andreu T (2019) Metal-oxide promoted Ni/Al2O3 as CO2 methanation micro-size catalysts. J CO2 Util 30:11–17

    Article  CAS  Google Scholar 

  • Hakim A, Marliza TS, Tahari MNA, Yusop MR, Hisham MWM, Yarmo MA (2016) Development of α-Fe2O3 as adsorbent and its effect on CO2 capture. Mater Sci Forum 840:421–426

    Article  Google Scholar 

  • Haneda K, Morrish AH (1988) Noncollinear magnetic structure of CoFe2O4 small particles. J App Phys 63:4258

    Article  CAS  Google Scholar 

  • He X, Fana C, Xiong-Yi Gu, Zhou X-G, Chen De, Zhu Y-A (2011) Role of CO2 in ethylbenzene dehydrogenation over Fe2O3(0 0 0 1) from first principles. J Mol Catal A Chem 344:53–61

    Article  CAS  Google Scholar 

  • Hong D, Vislovskiy VP, Park S, Park M, Yoo S, Chang J (2005) Dehydrogenation of ethylbenzene with carbon dioxide as soft oxidant over supported vanadium-antimony oxide catalyst. Bull Korean Chem Soc 26:1743–1748

    Article  CAS  Google Scholar 

  • Jarczewski S, Drozdek M, Michorczyk P, Cuadrado CC, Gandara-Loe J, Silvestre-Albero J, Lityńska LD, Kuśtrowski P (2020) On the catalytic role of superficial Vox species and coke deposited on mesoporous MgO replica in oxidative dehydrogenation of ethylbenzene. Appl Surf Sci 504:144336

    Article  CAS  Google Scholar 

  • Kano Y, Ohshima M, Kurokawa H, Miura H (2010) Kinetic study on the influence of CO2 on the dehydrogenation of ethylbenzene to styrene. React Kinet Mech Catal 100:79–83

    CAS  Google Scholar 

  • Khatamian M, Saket Oskoui M, Sadegh E (2017) Dehydrogenation of ethylbenzene with carbon dioxide in the presence of chromosilicate-based composites. J Phys Chem C 121:6650–6661

    Article  CAS  Google Scholar 

  • Kiyokawa T, Ikenaga N (2017) Oxidative dehydrogenation of but-1-ene with lattice oxygen in ferrite catalysts. App Catal Gen 536:97–103

    Article  CAS  Google Scholar 

  • Kock E, Kogler M, Bielz T, Klotzer B, Penner S (2013) In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2O3, ZrO2, and Yttria-stabilized ZrO2. J Phys Chem C 117:17666–17673

    Article  CAS  Google Scholar 

  • Laguna-Becero MA, Sanjuan ML, Merino RI (2007) Raman spectroscopic study of cation disorder in poly- and single crystals of the nickel aluminate spinel. J Phys Condens Matter 19:186217–186227

    Article  CAS  Google Scholar 

  • Larson AC, Dreele RBV (2004) General structure analysis system (GSAS). Los Alamos Natl Lab Rep LAUR 86:748

    Google Scholar 

  • Lee H, Jung JC, Kim H, Chung YM, Kim TJ, Lee SJ, Oh SH, Kim YS, Song IK (2009) Oxidative dehydrogenation of n-Butene to 1,3-Butadiene Over ZnMeIIIFeO4 catalysts: effect of trivalent metal (MeIII). Catal Lett 131:344–349

    Article  CAS  Google Scholar 

  • Liu BS, Chang RZ, Jiang L, Liu W, Au CT (2008) Preparation and high performance of La2O3-V2O5/MCM-41 catalysts for ethylbenzene dehydrogenation in the presence of CO2. J Phys Chem C 112:15490–15501

    Article  CAS  Google Scholar 

  • Liu W, Wang C, Su D, Qi W (2018) Oxidative dehydrogenation of ethylbenzene on nanocarbon: Kinetics and reaction mechanism. J Catal 368:1–7

    Article  CAS  Google Scholar 

  • Liu D, Li G, Liu J, Yi Y (2019a) Organic-inorganic hybrid mesoporous titanium silica material as bifunctional heterogeneous catalyst for the CO2 cycloaddition. Fuel 244:196–206

    Article  CAS  Google Scholar 

  • Liu J, Meng R, Li J, Jian P, Wang L, Jian R (2019b) Achieving high-performance for catalytic epoxidation of styrene with uniform magnetically separable CoFe2O4 nanoparticles. Appl Catal B Environ 254:214–222

    Article  CAS  Google Scholar 

  • Madduluri VR, Velpula V, Ketike T, Muppala AR, Peddinti N, Kondeboina M, David RB, Kamaraju SRR (2017) Oxidative dehydrogenation of ethylbenzene over γ-Al2O3 supported ceria-lanthanum oxide catalysts: influence of Ce/La composition. Arab J Chem 13:772–782

    Article  CAS  Google Scholar 

  • Madduluri VR, Narsinga R, Mallesh D, Mahesh KP, Barapati S, Bojja S, Rama RKS (2020) Improved catalytic properties of Co3O4-impregnated La2O3/MgO over Co3O4/MgO catalyst in the oxidative dehydrogenation of ethylbenzene. Res Chem Intermed 46:1881–1907

    Article  CAS  Google Scholar 

  • Manoilova OV, Podkolzin SG, Tope B, Lercher J, Stangland EE, Goupil J, Weckhuysen BM (2004) Surface acidity and basicity of La2O3, LaOCl, and LaCl3 characterized by IR spectroscopy, TPD, and DFT calculations. J Phys Chem B 108:15770–15781

    Article  CAS  Google Scholar 

  • Marques SPD, Pinheiro AL, Braga TP, Valentini A, Filho JM, Oliveira AC (2011) Nanocasted oxides for oxidative dehydrogenation of ethylbenzene utilizing CO2 as soft oxidant. J Mol Catal A Chem 348:1–13

    Article  CAS  Google Scholar 

  • Mohamed EA, Zahran ZN, Naruta Y (2017) Efficient heterogeneous CO2 to CO conversion with a phosphonic acid fabricated cofacial Iron porphyrin dimer. Chem Mater 29:7140–7150

    Article  CAS  Google Scholar 

  • Moronta A, Troconis ME, Gonzalez E, Moran C, Sanchez J, Gonzalez A, Quinonez J (2006) Dehydrogenation of ethylbenzene to styrene catalyzed by Co, Mo and CoMo catalysts supported on natural and aluminum-pillared clays: effect of the metal reduction. Appl Catal A Gen 310:199

    Article  CAS  Google Scholar 

  • Mukherjeea D, Park S, Reddy BM (2016) CO2 as a soft oxidant for oxidative dehydrogenation reaction: an eco-benign process for industry. J CO2 Util 16:301–312

    Article  CAS  Google Scholar 

  • Muniz FTL, Miranda MAR, Morilla SC, Sasaki JM (2016) The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr Sect Found Adv 72:385–390

    Article  CAS  Google Scholar 

  • Nederlo C, Kapteijn F, Makkee M (2012) Catalysed ethylbenzene dehydrogenation in CO2 or N2—carbon deposits as the active phase. App Catal A Gen 417:163–173

    Article  CAS  Google Scholar 

  • Nogueira IM, Sabadia GQ, Moreira AA, Filho JM, Oliveira AC (2011) Investigation of the deactivation of iron nanocomposites by coking in the dehydrogenation of ethylbenzene. J Mol Catal A Chem 351:81–92

    Article  CAS  Google Scholar 

  • Park J, Noh J, Chang J, Park S (2000) Ethylbenzene to styrene in the presence of carbon dioxide over zirconia. Catal Lett 65:75–78

    Article  CAS  Google Scholar 

  • Pochamoni R, Narani A, Varkolu M, Gudimella MD, Potharaju SSP, Burri DR, Kamaraju SRR (2015) Studies on ethylbenzene dehydrogenation with CO2 as soft oxidant over Co3O4/COK-12 catalysts. J Chem Sci 127:701–709

    Article  CAS  Google Scholar 

  • Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43:631

    Article  CAS  PubMed  Google Scholar 

  • Rethwisch DG, Dumesic JA (1986) Effect of metal-oxygen bond strength on properties of oxides infrared spectroscopy of adsorbed CO and CO2. Langmuir 2:73–79

    Article  CAS  Google Scholar 

  • Schweke D, Zalkind S, Attia S, Bloch J (2018) The interaction of CO2 with CeO2 powder explored by correlating adsorption and thermal desorption analyses. J Phys Chem C 122:9947–9957

    Article  CAS  Google Scholar 

  • Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484(7392):49–54

    Article  CAS  PubMed  Google Scholar 

  • Shenker H (1957) Magnetic Anisotropy of Cobalt Ferrite (Co1.01Fe2.00O3.62) and Nickel Cobalt Ferrite (Ni0.72Fe0.20Co0.08Fe2O4). Phys Rev 107:1246

    Article  CAS  Google Scholar 

  • Soares MCB, Barbosa FF, Torres MAM, Valentini A, Albuquerque AR, Sambrano JR, Pergher SBC, Essayem N, Braga TP (2019) Oxidative dehydrogenation of ethylbenzene to styrene over the CoFe2O4–MCM-41 catalyst: preferential adsorption on the O2–Fe3+O2- sites located at octahedral positions. Catal Sci Technol 9:2469–2484

    Article  Google Scholar 

  • Song QW, Zhou ZH, He LN (2017) Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem 19:3707–3728

    Article  CAS  Google Scholar 

  • Song K, Chen X, Yang R, Zhang B, Wang X, Liu P, Wang J (2020a) Novel hierarchical CoFe2Se4@CoFe2O4 and CoFe2S4@CoFe2O4 Core-shell nanoboxes electrode for high-performance electrochemical energy storage. Chem Eng J 390:124175

    Article  CAS  Google Scholar 

  • Song K, Wang X, Li J, Zhang B, Yang R, Liu P, Wang J (2020b) 3D hierarchical CoFe2O4/CoOOH nanowire arrays on Ni-Sponge for high-performance flexible supercapacitors. Electrochim Acta 340:135892

    Article  CAS  Google Scholar 

  • Su X, Lin W, Cheng H, Zhang C, Wang Y, Yu X, Zhijian W, Zha F (2017) Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate. Green Chem 19:1775–1781

    Article  CAS  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  CAS  Google Scholar 

  • Venkata RBG, Murali K, Siva SE, Naveen G, David RB, Seetha RRK (2020) Utilization of CO2 and N2 for selective synthesis of styrene from ethylbenzene over high surface area c-Al2O3 supported molybdenum nitride catalysts. Arab J Chem 13:3236–3245

    Article  CAS  Google Scholar 

  • von der Assen N, Jung J, Bardow A (2013) Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy Environ Sci 6(9):2721–2734

    Article  CAS  Google Scholar 

  • Walspurger S, Boels L, Cobden PD, Elzinga GD, Haije WG, Brink RW (2008) The crucial role of the K+–aluminium oxide interaction in K+-promoted alumina- and hydrotalcite-based materials for CO2 sorption at high temperatures. Chem Sus Chem 1:643–650

    Article  CAS  Google Scholar 

  • Walz F (2002) The Verwey transition—a topical review. J Phys Condens Matter 14:285–340

    Article  Google Scholar 

  • Wang H, Tsilomelekis G (2020) Catalytic performance and stability of Fe-doped CeO2 in propane oxidative dehydrogenation using carbon dioxide as oxidant. Catal Sci Technol 10(13):4362–4372

    Article  CAS  Google Scholar 

  • Wang Y, Lafosse A, Jacobi K (2004) Adsorption and reaction of CO2 on the RuO2 (110) surface. J Phys Chem B 108:15770–15781

    CAS  Google Scholar 

  • Wang Q, Li X, Li W, Feng J (2014) Promoting effect of Fe in oxidative dehydrogenation of ethylbenzene to styrene with CO2 (I) preparation and performance of Ce1 − xFexO2 catalyst. Catal Commun 50:21–24

    Article  CAS  Google Scholar 

  • Wang C, Shi J, Cui X, Zhang J, Zhang C, Wang L, Lv B (2017) The role of CO2 in dehydrogenation of ethylbenzene over pure a-Fe2O3 catalysts with different facets. J Catal 345:104–112

    Article  CAS  Google Scholar 

  • Wang L, Wang Y, Zhang R, Ding R, Chen X, Lv B (2020) Edge activating CO2 mediated ethylbenzene dehydrogenation by hierarchical porous BN catalyst. ACS Catal 10(12):6697–6706

    Article  CAS  Google Scholar 

  • Yan B, Wang L, Wang B, Alam F, Xiao Z, Li J, Jiang T (2019) Constructing a high-efficiency iron-based catalyst for carbon dioxide oxidative dehydrogenation of 1-butene: the role of oxygen mobility and proposed reaction mechanism. Appl Catal A Gen 572:71–79

    Article  CAS  Google Scholar 

  • Yin WJ, Wen B, Bandaru S, Krack M, Lau M, Liu LM (2016) The effect of excess electron and hole on CO2 adsorption and activation on rutile (110) surface. Sci Rep UK 6:23298

    Article  CAS  Google Scholar 

  • Yoon SH, Kang U, Park H, Abdel-Wahab A, Han DS (2019) Computational density functional theory study on the selective conversion of CO2 to formate on homogeneously and heterogeneously mixed CuFeO2 and CuO surfaces. Catal Today 335:345–353

    Article  CAS  Google Scholar 

  • Yoshikawa K, Sato H, Kaneeda M, Kondo JN (2014) Synthesis and analysis of CO2 adsorbents based on cerium oxide. J CO2 Util 8:34–38

    Article  CAS  Google Scholar 

  • Yuan M, Gao G, Hu X, Luo X, Huang Y, Jin B, Liang Z (2018) Premodified sepiolite functionalized with triethylenetetramine as an effective and inexpensive adsorbent for CO2 capture. Ind Eng Chem Res 57:6189–6200

    Article  CAS  Google Scholar 

  • Zhang L, Wu Z, Nelson NC, Sadow AD, Slowing II, Overbury SH (2015) Role Of CO2 as a soft oxidant for dehydrogenation of ethylbenzene to styrene over a high-surface-area ceria catalyst. ACS Catal 5:6426–6435

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian CNPq and CAPES funding agencies for financial support. Professor Antoninho Valentini for the TPD-CO2 analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Pinheiro Braga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1074 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa Borges Soares, M., Barbosa, F.F., Torres, M.A.M. et al. Preferential adsorption of CO2 on cobalt ferrite sites and its role in oxidative dehydrogenation of ethylbenzene. Braz. J. Chem. Eng. 38, 495–510 (2021). https://doi.org/10.1007/s43153-021-00121-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-021-00121-6

Keywords

Navigation