Skip to main content
Log in

Primary fluid exsolution in porphyry copper systems: evidence from magmatic apatite and anhydrite inclusions in zircon

  • Letter
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Audétat A (2004) Magmatic anhydrite and calcite in the ore-forming quartz-monzodiorite magma at Santa Rita, New Mexico (USA): genetic constraints on porphyry-Cu mineralization. Lithos 72:147–161

    Google Scholar 

  • Blundy J, Mavrogenes J, Tattitch B, Sparks S, Gilmer A (2015) Generation of porphyry copper deposits by gas–brine reaction in volcanic arcs. Nat Geosci 8(3):235–240

    Google Scholar 

  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334

    Google Scholar 

  • Brenan J (1993) Kinetics of fluorine, chlorine and hydroxyl exchange in fluorapatite. Chem Geol 110:195–210

    Google Scholar 

  • Campos E, Touret JLR, Nikogosian I, Delgado J (2002) Overheated, Cu-bearing magmas in the Zaldivar porphyry-Cu deposit, Northern Chile geodynamic consequences. Tectonophysics 345(1–4):229–251

    Google Scholar 

  • Candela PA (1986) Toward a thermodynamic model for the halogens in magmatic systems: an application to melt-vapor-apatite equilibria. Chem Geol 57:289–301

    Google Scholar 

  • Chambefort I, Dilles JH, Kent AJR (2008) Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits. Geology 36:719–722

    Google Scholar 

  • Cline JS, Bodnar RJ (1991) Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? J Geophys Res 96(B5):8113–8126

    Google Scholar 

  • Cooke DR, Hollings P, Walsh JL (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ Geol 100(5):801–818

    Google Scholar 

  • Goldoff B, Webster JD, Harlov DE (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. Am Mineral 97:1103–1115

    Google Scholar 

  • Harrison TM, Watson EB, Aikman AB (2007) Temperature spectra of zircon crystallization in plutonic rocks. Geology 35:635–638

    Google Scholar 

  • Heinrich CA, Gunther D, Audetat A, Ulrich T, Frischknecht R (1999) Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology 27(8):755–758

    Google Scholar 

  • Hutchinson MC, Dilles JH (2019) Evidence for magmatic anhydrite in porphyry copper intrusions. Econ Geol 114:143–152

    Google Scholar 

  • Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415–418

    Google Scholar 

  • Konecke BA, Fiege A, Simon AC, Linsler S, Holtz F (2019) An experimental calibration of a sulfur-in-apatite oxybarometer for mafic systems. Geochim Cosmochim Acta 265:242–258

    Google Scholar 

  • Kusebauch C, John T, Whitehouse MJ, Klemme S, Putnis A (2015) Distribution of halogens between fluid and apatite during fluid-mediated replacement processes. Geochim Cosmochim Acta 170:225–246

    Google Scholar 

  • Landtwing MR, Furrer C, Redmond PB, Pettke T, Guillong M, Heinrich CA (2010) The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Econ Geol 105(1):91–118

    Google Scholar 

  • Li HJ, Hermann J (2017) Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 °C: a new experimentally derived thermodynamic model. Am Mineral 102(3):580–594

    Google Scholar 

  • Li JX, Qin KZ, Li GM, Xiao B (2011) High-temperature magmatic fluid exsolved from magma at the Duobuza porphyry copper-gold deposit, Northern Tibet. Geofluids 11(2):134–143

  • Li JX, Li GM, Qin KZ, Xiao B, Chen L, Zhao JX (2012) Mineralogy and mineral chemistry of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco arc, northern Tibet. Resour Geol 62:19–41

    Google Scholar 

  • Li JX, Qin KZ, Li GM, Xiao B, Zhao JX, Cao MJ, Chen L (2013) Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet: evidence from U-Pb geochronology, petrochemistry and Sr-Nd-Hf-O isotope characteristics. Lithos 160:216–227

    Google Scholar 

  • Li JX, Qin KZ, Li GM, Richards JP, Zhao JX, Cao MJ (2014) Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet: petrogenetic and tectonic implications. Lithos 198:77–91

    Google Scholar 

  • Li JX, Qin KZ, Li GM, Xiao B, Zhao JX, Chen L (2016) Petrogenesis of Cretaceous igneous rocks from the Duolong porphyry Cu-Au deposit, central Tibet: evidence from zircon U-Pb geochronology, petrochemistry and Sr-Nd-Pb-Hf isotope characteristics. Geol J 51:285–307

    Google Scholar 

  • Li XK, Li C, Sun ZM, Wang M (2017) Origin and tectonic setting of the giant Duolong Cu-Au deposit, South Qiangtang Terrane, Tibet: evidence from geochronology and geochemistry of Early Cretaceous intrusive rocks. Ore Geol Rev 80:61–78

    Google Scholar 

  • Li JX, Qin KZ, Li GM, Evans NJ, Zhao JX, Yue YH, Xie J (2018) Volatile variations in magmas related to porphyry Cu-Au deposits: insights from amphibole geochemistry, Duolong district, central Tibet. Ore Geol Rev 95:649–662

    Google Scholar 

  • Luhr JF (2008) Primary igneous anhydrite: progress since its recognition in the 1982 El Chichón trachyandesite. J Volcanol Geotherm Res 175:394–407

    Google Scholar 

  • Masotta M, Keppler H (2015) Anhydrite solubility in differentiated arc magmas. Geochim Cosmochim Acta 158:79–102

    Google Scholar 

  • Masotta M, Keppler H, Chaudhari A (2016) Fluid-melt partitioning of sulfur in differentiated arc magmas and the sulfur yield of explosive volcanic eruptions. Geochim Cosmochim Acta 176:26–43

    Google Scholar 

  • Matjuschkin V, Blundy JD, Brooker RA (2016) The effect of pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits. Contrib Mineral Petrol 171:66

    Google Scholar 

  • Mernagh TP, Mavrogenes J (2019) Significance of high temperature fluids and melts in the Grasberg porphyry copper-gold deposit. Chem Geol 508:210–224

    Google Scholar 

  • Mutch EJF, Blundy JD, Tattitch BC, Cooper FJ, Brooker RA (2016) An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contrib Mineral Petrol 171(10):85

    Google Scholar 

  • Nathwani CL, Loader MA, Wilkinson JJ, Buret Y, Sievwright RH, Hollings P (2020) Multi-stage arc magma evolution recorded by apatite in volcanic rocks. Geology 48(4):323–327

    Google Scholar 

  • Parat F, Holtz F (2004) Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions. Contrib Mineral Petrol 147:201–212

    Google Scholar 

  • Parat F, Holtz F (2005) Sulfur partition coefficient between apatite and rhyolite: the role of bulk S content. Contrib Mineral Petrol 150(6):643–651

    Google Scholar 

  • Parat F, Holtz F, Klügel A (2011) S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas. Contrib Mineral Petrol 162(3):463–478

    Google Scholar 

  • Peng GY, Luhr JF, McGee JJ (1997) Factors controlling sulfur concentrations in volcanic apatite. Am Mineral 82:1210–1224

    Google Scholar 

  • Piccoli PM, Candela PA (2002) Apatite in igneous systems. Rev Mineral Geochem 48:255–292

    Google Scholar 

  • Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev 40:1–26

    Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160(1):45–66

    Google Scholar 

  • Scott JAJ, Humphreys MCS, Mather TA, Pyle DM, Stock MJ (2015) Insights into the behaviour of S, F, and Cl at Santiaguito Volcano, Guatemala, from apatite and glass. Lithos 232:375–394

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Google Scholar 

  • Stock MJ, Humphreys MCS, Smith VC, Isaia R, Pyle DM (2016) Late-stage volatile saturation as a potential trigger for explosive volcanic eruptions. Nat Geosci 9:249–254

    Google Scholar 

  • Stock MJ, Humphreys MCS, Smith VC, Isaia R, Brooker RA, Pyle DM (2018) Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: insights into pre-eruptive processes at Campi Flegrei, Italy. J Petrol 59:2463–2491

    Google Scholar 

  • Streck MJ, Dilles JH (1998) Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology 26:523–526

    Google Scholar 

  • Sun WD, Huang RF, Li H, Hu YB, Zhang CC, Sun SJ, Zhang LP, Ding X, Li CY, Zartman RE, Ling MX (2015) Porphyry deposits and oxidized magmas. Ore Geol Rev 65:97–131

    Google Scholar 

  • Sun J, Mao JW, Beaudoin G, Duan XZ, Yao FJ, Ouyang HG, Wu Y, Li YB, Meng XY (2017) Geochronology and geochemistry of porphyritic intrusions in the Duolong porphyry and epithermal Cu-Au district, central Tibet: implications for the genesis and exploration of porphyry copper deposits. Ore Geol Rev 80:1004–1019

    Google Scholar 

  • Van Hoose AE, Streck MJ, Pallister JS, Wälle M (2013) Sulfur evolution of the 1991 Pinatubo magmas based on apatite. J Volcanol Geotherm Res 257:72–89

    Google Scholar 

  • Wang R, Weinberg RF, Collins WJ, Richards JP, Zhu DC (2018) Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth Sci Rev 181:122–143

    Google Scholar 

  • Webster JD, Tappen CM, Mandeville CW (2009) Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: felsic silicate systems at 200MPa. Geochim Cosmochim Acta 73:559–581

    Google Scholar 

  • Webster JD, Vetere F, Botcharnikov RE, Goldoff B, McBirney A, Doherty AL (2015) Experimental and modeled chlorine solubilities in aluminosilicate melts at 1 to 7000 bars and 700 to 1250 °C: applications to magmas of Augustine Volcano, Alaska. Am Mineral 100(2–3):522–535

    Google Scholar 

  • Webster JD, Iveson AA, Rowe MC, Webster PM (2020) Chlorine and felsic magma evolution: modeling the behavior of an under-appreciated volatile component. Geochim Cosmochim Acta 271:248–288

    Google Scholar 

  • Xiao B, Qin KZ, Li GM, Li JX, Xia DX, Chen L, Zhao JX (2012) Highly oxidized magma and fluid evolution of Miocene qulong giant porphyry Cu-Mo deposit, southern Tibet, China. Resour Geol 62:4–18

    Google Scholar 

  • Young EJ, Myers AT, Munson EL, Conklin NM (1969) Mineralogy and geochemistry of fluorapatite from Cerro de Mercado, Durango, Mexico. In: US Geological Survey Professional Paper 650-D, pp. 84–93

  • Zajacz Z, Tsay A (2019) An accurate model to predict sulfur concentration at anhydrite saturation in silicate melts. Geochim Cosmochim Acta 261:288–304

    Google Scholar 

  • Zajacz Z, Candela PA, Piccoli PM, Sanchez-Valle C (2012) The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations. Geochim Cosmochim Acta 89:81–101

    Google Scholar 

  • Zhang C, Holtz F, Ma CQ, Wolff PE, Li XY (2012) Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: a case study from the Liujiawa pluton (Dabie orogen, China). Contrib Mineral Petrol 164:859–879

    Google Scholar 

  • Zhou Y, Fei GC, Li YQ, Menuge JF, Wen CQ, Zhou X, Zeng X (2020) Petrogenesis and tectonic setting of the Bolong ore-bearing granodiorite porphyry in the Bangongco–Nujiang metallogenic belt, northwestern Tibet: evidence from geochemistry, zircon U-Pb ages, and Sr–Nd–Pb–Hf isotopes. Lithos 362-363:105466

    Google Scholar 

  • Zhu JJ, Richards JP, Rees C, Creaser R, DuFrane SA, Locock A, Petrus JA, Lang J (2018) Elevated magmatic sulfur and chlorine contents in ore-forming magmas at the Red Chris porphyry Cu-Au deposit, northern British Columbia, Canada. Econ Geol 113:1047–1075

    Google Scholar 

Download references

Acknowledgments

We obtained support from senior geologists Yu-Bin Li at the No. 5 Geological Team, Tibet Bureau of Geology and Exploration. This manuscript benefited from constructive comments by Bernd Lehmann, Pete Hollings, Brian Tattitch, and an anonymous reviewer.

Funding

This work was funded by the Natural Science Foundation Project (41672091 and 41972083), the National Key Research and Development Project of China (2016YFC0600303), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA2007030101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Xiang Li.

Additional information

Editorial handling: P. Hollings

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLS 101 kb).

ESM 2

(XLSX 14 kb.)

ESM 3

(XLS 35 kb).

ESM 4

(XLSX 13 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JX., Li, GM., Evans, N.J. et al. Primary fluid exsolution in porphyry copper systems: evidence from magmatic apatite and anhydrite inclusions in zircon. Miner Deposita 56, 407–415 (2021). https://doi.org/10.1007/s00126-020-01013-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-020-01013-4

Navigation