Skip to main content
Log in

One-pot synthesis of double and triple polybetaine block copolymers and their temperature-responsive solution behavior

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Di- and triblock betaine copolymers composed of a sulfobetaine with a carboxy/phosphobetaine were synthesized by one-pot aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. The betaine methacrylate monomers were fully converted at each step by tuning the concentrations of the monomers, the chain transfer agent, and the initiator. AB-type diblocks poly(carboxybetaine methacrylate)-b-poly(sulfobetaine methacrylate) (PGLBT-b-PSPE) and poly(2-(methacryloyloxy)ethyl phosphorylcholine)-b-poly(sulfobetaine methacrylate) (PMPC-b-PSPE) were prepared to have identical unit numbers with different total molecular weights. Unlike homo-polysulfobetaine solutions or PGLBT-b-PSPEs in our previous report, the aqueous solutions of those diblock copolymers showed weak upper critical solution temperature (UCST) behavior, monitored by transmittance/dynamic light scattering. Even at the lowest temperature, the diblock chains remained in the unimer/aggregate polydisperse state, which is the intermediate stage prior to the emergence of monodisperse micelles. It is thought that the UCST behavior that originated from electrostatic attraction among PSPE motifs was interfered by temperature-inert motifs (PGLBT/PMPC) on the opposite side, having nearly the same unit number. The BAB-type triblock copolymer PSPE-b-PGLBT-b-PSPE with a 1:1:1 stoichiometry showed a clearer transmittance shift and size variation due to the increased ratio of PSPE at both chain ends. While the transmittance gradually decreased by cooling, larger aggregates (~ 700 nm) than those of diblocks (~ 180 nm) emerged with unimers. The small-large diffusive modes transformed into a monodisperse mode at much lower temperatures, which is assumed to be flower-like micelles consisting of PGLBT-loop coronas and PSPE core. However, another sample of 1:2:1 stoichiometry showed incomplete transition as diblocks having a similar AB ratio.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available on request from the authors.

References

  1. Laschewsky A, Rosenhahn A (2019) Molecular design of zwitterionic polymer interfaces: Searching for the difference. Langmuir 35(5):1056–1071. https://doi.org/10.1021/acs.langmuir.8b01789

    Article  CAS  PubMed  Google Scholar 

  2. Georgiev GS, Karnenska EB, Vassileva ED, Kamenova IP, Georgieva VT, Iliev SB, Ivanov IA (2006) Self-assembly, anti polyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromol 7(4):1329–1334. https://doi.org/10.1021/bm050938q

    Article  CAS  Google Scholar 

  3. Mary P, Bendejacq DD, Labeau MP, Dupuis P (2007) Reconciling low- and high-salt solution behavior of sulfobetaine polyzwitterions. J Phys Chem B 111(27):7767–7777. https://doi.org/10.1021/jp071995b

    Article  CAS  PubMed  Google Scholar 

  4. Hildebrand V, Laschewsky A, Pach M, Muller-Buschbaum P, Papadakis CM (2017) Effect of the zwitterion structure on the thermo-responsive behaviour of poly(sulfobetaine methacrylates). Polym Chem 8(1):310–322. https://doi.org/10.1039/c6py01220e

    Article  CAS  Google Scholar 

  5. Cao ZL, Zhang GZ (2015) Dynamics of polyzwitterions in salt-free and salt solutions. Phys Chem Chem Phys 17(40):27045–27051. https://doi.org/10.1039/c5cp04827c

    Article  CAS  PubMed  Google Scholar 

  6. Niu AZ, Liaw DJ, Sang HC, Wu C (2000) Light-scattering study of a zwitterionic polycarboxybetaine in aqueous solution. Macromolecules 33(9):3492–3494. https://doi.org/10.1021/ma991622b

    Article  CAS  Google Scholar 

  7. Morozova S, Hu G, Emrick T, Muthukumar M (2016) Influence of dipole orientation on solution properties of polyzwitterions. ACS Macro Lett 5(1):118–122. https://doi.org/10.1021/acsmacrolett.5b00876

    Article  CAS  Google Scholar 

  8. Delgado JD, Schlenoff JB (2017) Static and dynamic solution behavior of a polyzwitterion using a Hofmeister salt series. Macromolecules 50(11):4454–4464. https://doi.org/10.1021/acs.macromo1.7b00525

    Article  CAS  Google Scholar 

  9. Forster S, Schmidt M, Antonietti M (1990) Static and dynamic light-scattering by aqueous polyelectrolyte solutions - effect of molecular-weight. charge-density and added salt Polymer 31(5):781–792. https://doi.org/10.1016/0032-3861(90)90036-x

    Article  Google Scholar 

  10. Schmidt M (1989) Static and dynamic light-scattering by an aqueous poly-electrolyte solution without added salt - quaternized poly(2-vinylpyridine). Makromolekulare Chemie-Rapid Communications 10(2):89–96

    Article  CAS  Google Scholar 

  11. Jia D, Muthukumar M (2019) Effect of salt on the ordinary-extraordinary transition in solutions of charged macromolecules. J Am Chem Soc 141(14):5886–5896. https://doi.org/10.1021/jacs.9b00562

    Article  CAS  PubMed  Google Scholar 

  12. Kitano H, Sudo K, Ichikawa K, Ide M, Ishihara K (2000) Raman spectroscopic study on the structure of water in aqueous polyelectrolyte solutions. J Phys Chem B 104(47):11425–11429. https://doi.org/10.1021/jp000429c

    Article  CAS  Google Scholar 

  13. Kitano H, Imai M, Sudo K, Ide M (2002) Hydrogen-bonded network structure of water in aqueous solution of sulfobetaine polymers. J Phys Chem B 106(43):11391–11396. https://doi.org/10.1021/jp020185r

    Article  CAS  Google Scholar 

  14. Leng C, Hung HC, Sun SW, Wang DY, Li YT, Jiang SY, Chen Z (2015) Probing the surface hydration of nonfouling zwitterionic and PEG materials in contact with proteins. ACS Appl Mater Interfaces 7(30):16881–16888. https://doi.org/10.1021/acsami.5b05627

    Article  CAS  PubMed  Google Scholar 

  15. Leng C, Sun SW, Zhang KX, Jiang SY, Chen Z (2016) Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ. Acta Biomater 40:6–15. https://doi.org/10.1016/j.actbio.2016.02.030

    Article  CAS  PubMed  Google Scholar 

  16. Schlenoff JB (2014) Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30(32):9625–9636. https://doi.org/10.1021/la500057j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ladd J, Zhang Z, Chen S, Hower JC, Jiang S (2008) Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromol 9(5):1357–1361. https://doi.org/10.1021/bm701301s

    Article  CAS  Google Scholar 

  18. Guo SS, Janczewski D, Zhu XY, Quintana R, He T, Neoh KG (2015) Surface charge control for zwitterionic polymer brushes: tailoring surface properties to antifouling applications. J Colloid Interface Sci 452:43–53. https://doi.org/10.1016/j.jcis.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  19. Woodfield PA, Zhu YC, Pei YW, Roth PJ (2014) Hydrophobically modified sulfobetaine copolymers with tunable aqueous UCST through postpolymerization modification of poly(pentafluorophenyl acrylate). Macromolecules 47(2):750–762. https://doi.org/10.1021/ma402391a

    Article  CAS  Google Scholar 

  20. Chang Y, Liao SC, Higuchi A, Ruaan RC, Chu CW, Chen WY (2008) A Highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir 24(10):5453–5458. https://doi.org/10.1021/la800228c

    Article  CAS  PubMed  Google Scholar 

  21. Das M, Sanson N, Kumacheva E (2008) Zwitterionic poly(betaine-N-isopropylacrylamide) microgels: properties and applications. Chem Mater 20(22):7157–7163. https://doi.org/10.1021/cm801585x

    Article  CAS  Google Scholar 

  22. Zhao Y, Bai T, Shao Q, Jiang SY, Shen AQ (2015) Thermoresponsive self-assembled NiPAm-zwitterion copolymers. Polym Chem 6(7):1066–1077. https://doi.org/10.1039/c4py01553c

    Article  CAS  Google Scholar 

  23. Fevola MJ, Bridges JK, Kellum MG, Hester RD, McCormick CL (2004) pH-responsive polyzwitterions: a comparative study of acrylamide-based polyampholyte terpolymers and polybetaine copolymers. J Appl Polym Sci 94(1):24–39. https://doi.org/10.1002/app.20700

    Article  CAS  Google Scholar 

  24. Kathmann EEL, White LA, McCormick CL (1997) Water-soluble polymers .73. Electrolyte- and pH-responsive zwitterionic copolymers of 4- (2-acrylamido-2-methylpropyl)dimethylammonio butanoate with 3- (2-acrylamido-2-methylpropyl)dimethylammonio propanesulfonate. Macromolecules 30 (18):5297–5304. https://doi.org/10.1021/ma961214x

  25. Danko M, Kronekova Z, Mrlik M, Osickabin Yousaf A, Mihalova A, Tkac J, Kasak P, J (2019) Sulfobetaines meet carboxybetaines: modulation of thermo- and ion-responsivity, water structure, mechanical properties, and cell adhesion. Langmuir 35(5):1391–1403. https://doi.org/10.1021/acs.langmuir.8b01592

    Article  CAS  PubMed  Google Scholar 

  26. Matsuoka H, Yamakawa Y, Ghosh A, Saruwatari Y (2015) Nanostructure and salt effect of zwitterionic carboxybetaine brush at the air/water interface. Langmuir 31(17):4827–4836. https://doi.org/10.1021/acs.langmuir.5b00637

    Article  CAS  PubMed  Google Scholar 

  27. Murugaboopathy S, Matsuoka H (2015) Salt-dependent surface activity and micellization behaviour of zwitterionic amphiphilic diblock copolymers having carboxybetaine. Colloid Polym Sci 293(5):1317–1328. https://doi.org/10.1007/s00396-015-3503-1

    Article  CAS  Google Scholar 

  28. Doncom KEB, Warren NJ, Armes SP (2015) Polysulfobetaine-based diblock copolymer nano-objects via polymerization-induced self-assembly. Polym Chem 6(41):7264–7273. https://doi.org/10.1039/c5py00396b

    Article  CAS  Google Scholar 

  29. Doncom KEB, Willcock H, O’Reilly RK (2017) The direct synthesis of sulfobetaine-containing amphiphilic block copolymers and their self-assembly behavior. Eur Polymer J 87:497–507. https://doi.org/10.1016/j.eurpolymj.2016.09.002

    Article  CAS  Google Scholar 

  30. Mai T, Boye S, Yuan J, Volkel A, Grawert M, Gunter C, Lederer A, Taubert A (2015) Poly(ethylene oxide)-based block copolymers with very high molecular weights for biomimetic calcium phosphate mineralization. RSC Adv 5(125):103494–103505. https://doi.org/10.1039/c5ra20035k

    Article  CAS  Google Scholar 

  31. Nizardo NM, Schanzenbach D, Schonemann E, Laschewsky A (2018) Exploring Poly(ethylene glycol)-Polyzwitterion Diblock Copolymers as Biocompatible Smart Macrosurfactants Featuring UCST-Phase Behavior in Normal Saline Solution. Polymers 10 (3). https://doi.org/10.3390/polym10030325

  32. Wang D, Wu T, Wan XJ, Wang XF, Liu SY (2007) Purely salt-responsive micelle formation and inversion based on a novel schizophrenic sulfobetaine block copolymer: Structure and kinetics of micellization. Langmuir 23(23):11866–11874. https://doi.org/10.1021/la702029a

    Article  CAS  PubMed  Google Scholar 

  33. Sun H, Chen XL, Han X, Liu HL (2017) Dual thermoresponsive aggregation of schizophrenic PDMAEMA-b-PSBMA copolymer with an unrepeatable pH response and a recycled CO2/N-2 response. Langmuir 33(10):2646–2654. https://doi.org/10.1021/acs.langmuir.7b00065

    Article  CAS  PubMed  Google Scholar 

  34. Vishnevetskaya NS, Hildebrand V, Niebuur BJ, Grillo I, Filippov SK, Laschewsky A, Muller-Buschbaum P, Papadakis CM (2017) “Schizophrenic” micelles from doubly thermoresponsive polysulfobetaine-b-poly(N-isopropylmethacrylamide) diblock copolymers. Macromolecules 50(10):3985–3999. https://doi.org/10.1021/acs.macromol.7b00356

    Article  CAS  Google Scholar 

  35. Vishnevetskaya NS, Hildebrand V, Dyakonova MA, Niebuur BJ, Kyriakos K, Raftopoulos KN, Di ZY, Muller-Buschbaum P, Laschewsky A, Papadakis CM (2018) Dual orthogonal switching of the “schizophrenic” self-assembly of diblock copolymers. Macromolecules 51(7):2604–2614. https://doi.org/10.1021/acs.macromol.8b00096

    Article  CAS  Google Scholar 

  36. Hippius C, Butun V, Erel-Goktepe I (2014) Bacterial anti-adhesive properties of a monolayer of zwitterionic block copolymer micelles. Materials Science & Engineering C-Materials for Biological Applications 41:354–362. https://doi.org/10.1016/j.msec.2014.04.023

    Article  CAS  Google Scholar 

  37. Lim J, Matsuoka H, Yusa S, Saruwatari Y (2019) Temperature-responsive behavior of double hydrophilic carboxy-sulfobetaine block copolymers and their self-assemblies in water. Langmuir 35(5):1571–1582. https://doi.org/10.1021/acs.langmuir.8b02952

    Article  CAS  PubMed  Google Scholar 

  38. Lim J, Matsuoka H, Saruwatari Y (2020) Effects of pH on the stimuli-responsive characteristics of double betaine hydrophilic block copolymer PGLBT-b-PSPE. Langmuir 36(7):1727–1736. https://doi.org/10.1021/acs.langmuir.9b03682

    Article  CAS  PubMed  Google Scholar 

  39. Lim J, Matsuoka H, Saruwatari Y (2020) Effects of halide anions on the solution behavior of double hydrophilic carboxy-sulfobetaine block copolymers. Langmuir 36(19):5165–5175. https://doi.org/10.1021/acs.langmuir.0c00325

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi M, Shimizu A, Yusa SI, Higaki Y (2021) Lyotropic morphology transition of double zwitterionic diblock copolymer aqueous solutions. Macromolecular Chemistry and Physics 222 (4). https://doi.org/10.1002/macp.202000377

  41. Taylor ME, Lounder SJ, Asatekin A, Panzer MJ (2020) Synthesis and self-assembly of fully zwitterionic triblock copolymers. Acs Materials Letters 2(3):261–265. https://doi.org/10.1021/acsmaterialslett.9b00500

    Article  CAS  Google Scholar 

  42. G Gody T Maschmeyer PB Zetterlund S Perrier 2013 Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization Nat Commun 4 https://doi.org/10.1038/ncomms3505

  43. Gody G, Maschmeyer T, Zetterlund PB, Perrier S (2014) Exploitation of the degenerative transfer mechanism in RAFT polymerization for synthesis of polymer of high livingness at full monomer conversion. Macromolecules 47(2):639–649. https://doi.org/10.1021/ma402286e

    Article  CAS  Google Scholar 

  44. Gody G, Maschmeyer T, Zetterlund PB, Perrier S (2014) Pushing the limit of the RAFT process: multiblock copolymers by one-pot rapid multiple chain extensions at full monomer conversion. Macromolecules 47(10):3451–3460. https://doi.org/10.1021/ma402435n

    Article  CAS  Google Scholar 

  45. Gody G, Barbey R, Danial M, Perrier S (2015) Ultrafast RAFT polymerization: multiblock copolymers within minutes. Polym Chem 6(9):1502–1511. https://doi.org/10.1039/c4py01251h

    Article  CAS  Google Scholar 

  46. Martin L, Gody G, Perrier S (2015) Preparation of complex multiblock copolymers via aqueous RAFT polymerization at room temperature. Polym Chem 6(27):4875–4886. https://doi.org/10.1039/c5py00478k

    Article  CAS  Google Scholar 

  47. Jones ER, Semsarilar M, Blanazs A, Armes SP (2012) Efficient synthesis of amine-functional diblock copolymer nanoparticles via RAFT dispersion polymerization of benzyl methacrylate in alcoholic media. Macromolecules 45(12):5091–5098. https://doi.org/10.1021/ma300898e

    Article  CAS  Google Scholar 

  48. Baussard JF, Habib-Jiwan JL, Laschewsky A, Mertoglu M, Storsberg J (2004) New chain transfer agents for reversible addition-fragmentation chain transfer (RAFT) polymerisation in aqueous solution. Polymer 45(11):3615–3626. https://doi.org/10.1016/j.polymer.2004.03.081

    Article  CAS  Google Scholar 

  49. Fuchs AV, Thurecht KJ (2017) Stability of trithiocarbonate RAFT agents containing both a cyano and a carboxylic acid functional group. ACS Macro Lett 6(3):287–291. https://doi.org/10.1021/acsmacrolett.7b00100

    Article  CAS  Google Scholar 

  50. Moad G (2014) Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization - status of the dilemma. Macromol Chem Phys 215(1):9–26. https://doi.org/10.1002/macp.201300562

    Article  CAS  Google Scholar 

  51. Williams M, Penfold NJW, Lovett JR, Warren NJ, Douglas CWI, Doroshenko N, Verstraete P, Smets J, Armes SP (2016) Bespoke cationic nano-objects via RAFT aqueous dispersion polymerisation. Polym Chem 7(23):3864–3873. https://doi.org/10.1039/c6py00696e

    Article  CAS  Google Scholar 

  52. Lovett JR, Warren NJ, Ratcliffe LPD, Kocik MK, Armes SP (2015) pH-Responsive non-ionic diblock copolymers: ionization of carboxylic acid end-groups induces an order-order morphological transition. Angewandte Chemie-International Edition 54(4):1279–1283. https://doi.org/10.1002/anie.201409799

    Article  CAS  PubMed  Google Scholar 

  53. Penfold NJW, Lovett JR, Warren NJ, Verstraete P, Smets J, Armes SP (2016) pH-responsive non-ionic diblock copolymers: protonation of a morpholine end-group induces an order-order transition. Polym Chem 7(1):79–88. https://doi.org/10.1039/c5py01510c

    Article  CAS  Google Scholar 

  54. Valdebenito A, Encinas MV (2010) Effect of solvent on the free radical polymerization of N. N-dimethylacrylamide Polymer International 59(9):1246–1251. https://doi.org/10.1002/pi.2856

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Matsuoka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 971 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J., Matsuoka, H. & Saruwatari, Y. One-pot synthesis of double and triple polybetaine block copolymers and their temperature-responsive solution behavior. Colloid Polym Sci 299, 1–13 (2021). https://doi.org/10.1007/s00396-021-04846-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04846-1

Keywords

Navigation