Skip to main content
Log in

Quasi-3D Refined Theory for Functionally Graded Porous Plates: Vibration Analysis

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

This paper aims to present free vibration of porous functionally graded thick rectangular plates using a quasi-3D refined theory. This theory considers the thickness stretching effect for vibration analysis of porous plates. It is assumed that the material properties of the porous plate are varying across the plate thickness according to a modified polynomial material law. The equations of motion of the porous plate are obtained via the Hamilton principle. Navier’s technique is applied to obtain the closed-form solution for simply-supported functionally graded materials porous plates. Some numerical validations are presented to prove the accuracy of the present quasi-3D refined theory in predicting the free vibration response of porous plates. The influence of porosity parameter, aspect ratio, side-to-thickness ratio, and exponent graded factor are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Hosseini-Hashemi, S., Taher, H.R.D., Akhavan, H., and Omidi, M., Free Vibration of Functionally Graded Rectangular Plates Using First-Order Shear Deformation Plate Theory, Appl. Math. Model., 2010, vol. 34, no. 5, pp. 1276–1291.

    Article  MathSciNet  Google Scholar 

  2. Fares, M., Elmarghany, M.K., and Atta, D., An Efficient and Simple Refined Theory for Bending and Vibration of Functionally Graded Plates, Compos. Struct., 2009, vol. 91, no. 3, pp. 296–305.

    Article  Google Scholar 

  3. Thai, H.-T. and Choi, D.-H., A Refined Shear Deformation Theory for Free Vibration of Functionally Graded Plates on Elastic Foundation, Compos. B. Eng., 2012, vol. 43, no. 5, pp. 2335–2347.

    Article  Google Scholar 

  4. Neves, A., Ferreira, A., Carrera, E., Roque, C., Cinefra, M., Jorge, R., and Soares, C., A Quasi-3D Sinusoidal Shear Deformation Theory for the Static and Free Vibration Analysis of Functionally Graded Plates, Compos. B. Eng., 2012, vol. 43, no. 2, pp. 711–725.

    Article  Google Scholar 

  5. Thai, H.-T. and Vo, T.P., A New Sinusoidal Shear Deformation Theory for Bending, Buckling, and Vibration of Functionally Graded Plates, Appl. Math. Model., 2013, vol. 37, no. 5, pp. 3269–3281.

    Article  MathSciNet  Google Scholar 

  6. Neves, A., Ferreira, A., Carrera, E., Cinefra, M., Roque, C., Jorge, R., and Soares, C., A Quasi-3D Hyperbolic Shear Deformation Theory for the Static and Free Vibration Analysis of Functionally Graded Plates, Compos. Struct., 2012, vol. 94, no. 5, pp. 1814–1825.

    Article  Google Scholar 

  7. Thai, H.-T., Park, T., and Choi, D.-H., An Efficient Shear Deformation Theory for Vibration of Functionally Graded Plates, Arch. Appl. Mech., 2013, vol. 83, no. 1, pp. 137–149.

    Article  ADS  Google Scholar 

  8. Zaoui, F.Z., Tounsi, A., and Ouinas, D., Free Vibration of Functionally Graded Plates Resting on Elastic Foundations Based on Quasi-3D Hybrid-Type Higher Order Shear Deformation Theory, Smart Struct. Syst., 2017, vol. 20, no. 4, pp. 509–524.

    Google Scholar 

  9. Zenkour, A.M., On Vibration of Functionally Graded Plates According to a Refined Trigonometric Plate Theory, Int. J. Struct. Stab. Dy., 2005, vol. 5, no. 2, pp. 279–297.

    Article  MathSciNet  Google Scholar 

  10. Hebali, H., Bakora, A., Tounsi, A., and Kaci, A., A Novel Four Variable Refined Plate Theory for Bending, Buckling, and Vibration of Functionally Graded Plates, Steel Compos. Struct., 2016, vol. 22, no. 3, pp. 473–495.

    Article  Google Scholar 

  11. Jha, D., Kant, T., and Singh, R., Free Vibration of Functionally Graded Plates with a Higher-Order Shear and Normal Deformation Theory, Int. J. Struct. Stab. Dy., 2013, vol. 13, no. 1, p. 1350004.

    Article  Google Scholar 

  12. Djedid, I.K., Benachour, A., Houari, M.S.A., Tounsi, A., and Ameur, M., A N-Order Four Variable Refined Theory for Bending and Free Vibration of Functionally Graded Plates, Steel Compos. Struct., 2014, vol. 17, no. 1, pp. 21–46.

    Article  Google Scholar 

  13. Galeban, M., Mojahedin, A., Taghavi, Y., and Jabbari, M., Free Vibration of Functionally Graded Thin Beams Made of Saturated Porous Materials, Steel Compos. Struct., 2016, vol. 21, no. 5, pp. 999–1016.

    Article  Google Scholar 

  14. Chen, D., Yang, J., and Kitipornchai, S., Free and Forced Vibrations of Shear Deformable Functionally Graded Porous Beams, Int. J. Mech. Sci., 2016, vol. 108, pp. 14–22.

    Article  Google Scholar 

  15. Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Atmane, H.A., and Tounsi, A., Analysis of Wave Propagation and Free Vibration of Functionally Graded Porous Material Beam with a Novel Four Variable Refined Theory, Earthq. Struct., 2018, vol. 15, no. 4, pp. 369–382.

    Google Scholar 

  16. Shafiei, N., Mirjavadi, S.S., Mohasel Afshari, B., Rabby, S., and Kazemi, M., Vibration of Two-Dimensional Imperfect Functionally Graded (2D-FG) Porous Nano-/Micro-Beams, Comput. Method Appl. M, 2017, vol. 322, pp. 615–632.

    Article  Google Scholar 

  17. Berghouti, H., Adda Bedia, E., Benkhedda, A., and Tounsi, A., Vibration Analysis of Nonlocal Porous Nanobeams Made of Functionally Graded Material, Adv. Nano Res., 2019, vol. 9, no. 5, pp. 351–364.

    Google Scholar 

  18. Li, H., Pang, F., Chen, H., and Du, Y., Vibration Analysis of Functionally Graded Porous Cylindrical Shell with Arbitrary Boundary Restraints by Using a Semianalytical Method, Compos. B. Eng., 2019, vol. 164, pp. 249–264.

    Article  Google Scholar 

  19. Wang, Y. and Wu, D., Vibration Analysis of Functionally Graded Porous Cylindrical Shell with Arbitrary Boundary Restraints by Using a Semianalytical Method, Aerosp. Sci. Technol., 2017, vol. 66, pp. 83–91.

    Article  Google Scholar 

  20. Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J., and Wang, Q., A Unified Solution for the Vibration Analysis of Functionally Graded Porous (FGP) Shallow Shells with General Boundary Conditions, Compos. B. Eng., 2019, vol. 156, pp. 406–424.

    Article  Google Scholar 

  21. Akbaş, Ş.D., Vibration and Static Analysis of Functionally Graded Porous Plates, J. Appl. Comput. Mech., 2017, vol. 3, no. 3, pp. 199–207.

    Google Scholar 

  22. Rezaei, A., Saidi, A., Abrishamdari, M., and Mohammadi, M.P., Natural Frequencies of Functionally Graded Plates with Porosities via a Simple Four Variable Plate Theory: An Analytical Approach, Thin-Walled Struct., 2017, vol. 120, pp. 366–377.

    Article  Google Scholar 

  23. Zhao, J., Choe, K., Xie, F., Wang, A., Shuai, C., and Wang, Q., Three-Dimensional Exact Solution for Vibration Analysis of Thick Functionally Graded Porous (FGP) Rectangular Plates with Arbitrary Boundary Conditions, Compos. B. Eng., 2018, vol. 155, pp. 369–381.

    Article  Google Scholar 

  24. Demirhan, P.A. and Taskin, V., Bending and Free Vibration Analysis of Levy-Type Porous Functionally Graded Plate Using State Space Approach, Compos. B. Eng., 2019, vol. 160, pp. 661–676.

    Article  Google Scholar 

  25. Daikh, A.A. and Zenkour, A.M., Free Vibration and Buckling of Porous Power-Law and Sigmoid Functionally Graded Sandwich Plates Using a Simple Higher-Order Shear Deformation Theory, Mater. Res. Express, 2019, vol. 6, no. 11, p. 115707.

    Article  ADS  Google Scholar 

  26. Farrokh, M., Afzali, M., and Carrera, E., Mechanical and Thermal Buckling Loads of Rectangular FG Plates by Using Higher-Order Unified Formulation, Mech. Adv. Mater. Struct., 2019, pp. 1–10.

  27. Zenkour, A.M., Quasi-3D Refined Theory for Functionally Graded Porous Plates: Displacements and Stresses, Phys. Mesomech., 2020, vol. 23, no. 1, pp. 39–53. https://doi.org/10.1134/S1029959920010051

    Article  Google Scholar 

  28. Karamanli, A. and Aydogdu, M., Vibration of Functionally Graded Shear and Normal Deformable Porous Microplates via Finite Element Method, Compos. Struct., 2020, vol. 237, p. 111934.

    Article  Google Scholar 

  29. Matsunaga, H., Free Vibration and Stability of Functionally Graded Plates According to a 2-D Higher-Order Deformation Theory, Compos. Struct., 2008, vol. 82, no. 2, pp. 499–512.

    Article  Google Scholar 

  30. Zenkour, A.M. and Aljadani, M.H., Porosity Effect on Thermal Buckling Behavior of Actuated Functionally Graded Piezoelectric Nanoplates, Eur. J. Mech. A. Solids, 2019, vol. 78, p. 103835.

    Article  ADS  MathSciNet  Google Scholar 

  31. Zenkour, A. and Aljadani, M., Mechanical Buckling of Functionally Graded Plates Using a Refined Higher-Order Shear and Normal Deformation Plate Theory, Adv. Aircr. Spacecr. Sci., 2018, vol. 5, no. 6, pp. 615–632.

    Google Scholar 

  32. Thinh, T.I., Tu, T.M., Quoc, T.H., and Long, N.V., Vibration and Buckling Analysis of Functionally Graded Plates Using New Eight-Unknown Higher Order Shear Deformation Theory, Lat. Am. J. Solids Struct., 2016, vol. 13, no. 3, pp. 456–477.

    Article  Google Scholar 

  33. Zhao, X., Lee, Y., and Liew, K.M., Free Vibration Analysis of Functionally Graded Plates Using the Element-Free KP-Ritz Method, J. Sound Vib., 2009, vol. 319, no. 3–5, pp. 918–939.

    Article  ADS  Google Scholar 

  34. Hosseini-Hashemi, S., Fadaee, M., and Atashipour, S.R., Study on the Free Vibration of Thick Functionally Graded Rectangular Plates According to a New Exact Closed-Form Procedure, Compos. Struct., 2011, vol. 93, no. 2, pp. 722–735.

    Article  Google Scholar 

  35. Hosseini-Hashemi, S., Fadaee, M., and Atashipour, S.R., A New Exact Analytical Approach for Free Vibration of Reissner–Mindlin Functionally Graded Rectangular Plates, Int. J. Mech. Sci., 2011, vol. 53, no. 1, pp. 11–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zenkour.

Additional information

Translated from in Fizicheskaya Mezomekhanika, 2021, Vol. 24, No. 2, pp. 56–70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkour, A.M., Aljadani, M.H. Quasi-3D Refined Theory for Functionally Graded Porous Plates: Vibration Analysis. Phys Mesomech 24, 243–256 (2021). https://doi.org/10.1134/S1029959921030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959921030036

Keywords:

Navigation