Skip to main content
Log in

ACTION OF PHYSISORBED COLLECTOR IN PARTICLE–BUBBLE ATTACHMENT

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

Abstract

The action of the arbitrary physisorbed species of a collector at a mineral is compared with the theoretical evidence on particle–bubble attachment. The lack of the correlation between the hydrophobic behavior, characterized by the wetting angle, and the floatability of minerals, as well as the correlation between the inductance time and the mineral recovery are discussed. The causes of disagreement between the collectability sequence of xanthates, dithiophosphates and dithiocarbamates and the sequence of boost in energy of chemical bond between these reagents and cation of mineral lattice are exposed. Collectabilities of frothers and residues of the collectors are explained. The ways to increase flotation performance are shown, namely, the mineral recovery and the concentrate quality can be improved by means of adjustment of the chemisorbable /physisorbable collector ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Abramov, A.A., Principles of Selection and Synthesis of Higher Selective Collectors in Flotation, Tsvet. Metally, 2009, No. 4, pp. 35–40.

    Google Scholar 

  2. Kondrat’ev, S.A., Physically Sorbed Collectors in Froth Flotation and Their Activity. Part I, Journal of Mining Science, 2008, vol. 44, no. 6, pp. 628–635.

    Article  Google Scholar 

  3. Kondrat’ev, S.A., Physically Sorbed Collectors in Froth Flotation and Their Activity. Part II, Journal of Mining Science, 2009, vol. 45, no. 2, pp. 173–181.

    Article  Google Scholar 

  4. Kondrat’ev, S.A. and Moshkin, N.P., Foam Separation Selectivity Conditioned by the Chemically Attached Agent, Journal of Mining Science, 2014, vol. 50, no. 4, pp. 780–787.

    Article  Google Scholar 

  5. Kondrat’ev, S.A. and Moshkin, N.P., Estimate of Collecting Force of Flotation Agent, Journal of Mining Science, 2015, vol. 51, no. 1, pp. 150–156.

    Article  Google Scholar 

  6. Kondrat’ev, S.A., Moshkin, N.P., and Konovalov, I.A., Collecting Ability of Easily Desorbed Xanthates, Journal of Mining Science, 2015, vol. 51, no. 4, pp. 830–838.

    Article  Google Scholar 

  7. Kondrat’ev, S.A., Moshkin, N.P., and Burdakova, E.A., Determination of Activity/Selectivity Ratio in Chemical and Physical Adsorption of a Reagent, Journal of Mining Science, 2016, vol. 52, no. 5, pp. 965–973.

    Article  Google Scholar 

  8. Sutherland, K.L. and Wark, I.W., Principles of Flotation, Principles of Flotation, Austr. Inst. Min. Metall., Melbourne, Australia, 1955.

  9. Klassen, V.I. and Tikhonov, S.A., Effect of Sodium Oleate on Flotation Properties of Surface of Air Bubbles, Tsvet. Metally, 1960, no. 10, pp. 4–8.

    Google Scholar 

  10. Finch, J.A. and Smith, G.W., Bubble–Solid Attachment as a Function of Bubble Surface Tension, Can. Metall. Q., 1975, vol. 14, issue 1, pp. 47–51.

    Article  Google Scholar 

  11. Gardner, J.R. and Woods, R., An Electrochemical Investigation of the Natural Floatability of Chalcopyrite, Int. J. Miner. Process., 1979, vol. 6, pp. 1–16.

    Article  Google Scholar 

  12. Babel, B. and Rudolph, M., Investigating Reagent–Mineral Interactions by Colloidal Probe Atomic Force Microscopy, XXIV Int. Miner. Process. Congress Proceedings, Moscow, 2018, pp. 1384–1391.

  13. Kelebek, S., Finch, J.A., Yörük, S., and Smith, G.W., Wettability and Floatability of Galena–Xanthate System as a Function of Solution Surface Tension, Colloids Surf., 1986, vol. 20, pp. 89–100.

    Article  Google Scholar 

  14. Dolzhenkova, A.N. and Kholodnitsky, B.A., Measurement of Wetting Angles: A Case-Study of Flotation, Obog. Rud, 1975, no. 5, pp. 40–43.

  15. Laskowski, J.S., Thermodynamic and Kinetic Flotation Criteria,Miner. Process. Extr. Metall. Rev., 1989, 5, pp. 25–41.

    Article  Google Scholar 

  16. Kloppers, L., Maree, W., Oyekola, O., and Hangone, G., Froth Flotation of Merensky Reef Platinum-Bearing Ore Using Mixtures of SIBX with a Dithiophosphate and a Dithiocarbamate, Miner. Eng., 2015, vol. 20, pp. 1047–1053.

    Google Scholar 

  17. Karimian, A., Rezaei B., and Masoumi A. The Effect of Mixed Collectors in the Rougher Flotation of Subgun Copper, Life Sci. J., 2013, vol. 10, pp. 268–272.

    Google Scholar 

  18. McFadzean, B. and Castelyn, D.G., and O’Connor, C.T., The Effect of Mixed Thiol Collectors on the Flotation of Galena, Miner. Eng., 2012, vol. 36–38, pp. 211–218.

    Article  Google Scholar 

  19. Bagci, E., Ekmekci, Z., and Bradshow, D.J., Adsorption Behavior of Xanthate and Dithiophosphinate from Their Mixtures on Chalcopyrite,Miner. Eng., 2007, vol. 20, pp. 1047–1053.

    Article  Google Scholar 

  20. Nagaraj, D.R. and Ravishankar, S.A., Flotation Reagents—A Critical Overview from an Industry Perspective, Froth Flotation: A Century of Innovation, Fuerstenau M.C., Graeme J., Yoon R.H. (Eds.), Society for Mining, Metallurgy, and Exploration, Littleton, Colorado, 2007.

  21. Bradshaw D.J., Synergistic Effects between Thiol Collectors Used in the Flotation of Pyrite Ph.D. Thesis University of Cape Town 1997.

  22. Lotter N.O. and Bradshaw D.J., The Formulation and Use of Mixed Collectors in Sulphide Flotation Miner. Eng., 2010, vol. 23, pp. 945–951.

    Article  Google Scholar 

  23. Hangone, G., Bradshaw, D., and Ekmekci, Z., Flotation of Copper Sulphide Ore from Okiep Using Thiol Collectors and Their Mixture,J. S. Afr. Inst. Min. Metall., 2005, vol. 105, pp. 199–206.

    Google Scholar 

  24. Bogdanov, O.S. (Ed.), Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Ore Flotation), Moscow: Nedra, 1980.

  25. Abramov, A.A., Standards of Selection and Construction of Selective Collecting Agents. Part I: Theoretical Framework for the Selection of Selective Collectors, Tsvet. Metally, 20212, no. 4, pp. 17–20.

  26. Taguta J. and O’Connor C. T. McFadzean B., Relating Enthalpies of Adsorption of Thiol Collectors and Collector Mixtures on Base Metal Sulfide Minerals to Their Floatability, The 28th Int. Min. Proc. Congress Proceedings, Canadian Institute of Mining, Metallurgy and Petroleum, 2016. ISBN: 978-1-926872-29-2.

  27. Glembotsky, V.A. and Klassen, V.I., Flotatsionnye metody obogashcheniya (Flotation Methods of Mineral Processing), Moscow: Nedra, 1981.

  28. Goden, A.M., Osnovy obogashcheniya poleznykh iskopaemykh (Fundamentals of Mineral Processing), Moscow: Gosgortekhizdat, 1946.

  29. Melik-Gaikazyan, V.I., Wetting Angles and Applications in Flotation Research, Obog. Rud, 1976, no. 5, pp. 13–20.

  30. Melik-Gaikazyan, V.I. and Voronchikhina, V.V., Identification of Causes of the Apparent Violation of the Young Law,Elektrokhimiya, 1969, vol. 3, no. 4, pp. 418–425.

  31. Malysa, K., Barzyk, W., and Pomianowski, A., Influence of Frothers on Floatability in Flotation of Single Minerals (Quartz and Synthetic Chalcocite), Int. J. Miner. Process., 1981, vol. 8, pp. 329–343.

    Article  Google Scholar 

  32. Heyes, G.W. and Trahar, W.J., The Natural Floatability of Chalcopyrite, Int. J. Miner. Process., 1977, vol. 4, pp. 317–344.

    Article  Google Scholar 

  33. Taggart, A.F., del Guidice, G.M.M., and Ziehl, O.A., The Case for the Chemical Theory of Flotation, Trans. Am. Inst. Min. Metall. Eng., 1934, vol. 112, pp. 348–381.

    Google Scholar 

  34. Dzienisiewies, J. and Pryor, E.J., An Investigation into the Action of Air in Froth Flotation, Bull. Inst. Min. Metall., 1950, vol. 521, pp. 1–23.

  35. Lekki, J. and Laskowski, J.S., On the Dynamic Effect of Frother–Collector Joint Action in Flotation, Transactions IMM, Sec. C, 1971, vol. 80, pp. 174–180.

    Google Scholar 

  36. Derjaguin, B.V. and Dukhin, S.S., Transactions IMM, 1961, vol. 70, P. 221.

  37. Leja, J. and He, Q., The role of Flotation Frothers in the Particle–Bubble Attachment Process, Principles of Mineral Flotation: Symposium Proceedings, M.H. Jones and J.T. Woodcock (Eds.), Austr. Inst. Min. Metall., 1984, pp. 215–232.

  38. Critchley, J.K. and Riaz, M., Study of Synergism between Xanthate and Dithiocarbamate Collectors in Flotation of Heazlewoodite,Trans. Inst. Min. Metall., 1991, vol. 100, pp. 55–57.

  39. Plaksin, I.N. and Zaitseva, S.P., Nacuh. Soobshch. IGD Skochinskogo. Akad. Nauk SSSR, 1960, no. 6, pp. 15–20.

  40. Lotter, N.O., Bradshaw, D.J., and Barnes, A.R., Classification of the Major Copper Sulphides into Semiconductor Types, and Associated Flotation Characteristics, Miner. Eng., 2016, vol. 96–97, pp. 177–184.

    Article  Google Scholar 

  41. Lucassen-Reynders, E.H., Lucassen, J., and Giles, D., Surface and Bulk Properties of Mixed Anionic, Cationic Surfactant Systems,J. Colloid Interface Sci., 1981, vol. 81, no. 1, pp. 150–157.

    Article  Google Scholar 

  42. Jost, F., Leiter, H., and Schwuger, M.J., Synergisms in Binary Surfactant Mixtures, Colloid Poly. Sci., 1988, vol. 266, pp. 554–561.

    Article  Google Scholar 

  43. Sis, H. and Chander, S., Improving Froth Characteristics and Flotation Recovery of Phosphate Ores with Nonionic Surfactants,Miner. Eng., 2003, vol. 16, pp. 587–595.

    Article  Google Scholar 

  44. Lynch, A.J., Johnson, N.W., Manlapig, E.V., and Thorne, C.G.,Mineral and Coal Flotation Circuits-Their Simulation and Control, Amsterdam: Elsevier, 1981.

  45. Von Rybinski, W. and Schwuger, M.J., Adsorption of Surfactant Mixtures in Froth Flotation, Langmuir, 1986, vol. 2, pp. 639–643.

    Article  Google Scholar 

  46. Konovalov, I.A and Kondrat’ev, S.A., Flotation Activity of Xanthogenates, Journal of Mining Science, 2020, vol. 56, no. 1, pp. 104–112.

    Article  Google Scholar 

  47. Plaksin, N.I., Modern Trends in Research into Selective Flotation of Nonferrous and Rare Metals, Sovremennoe sostoyanie i zadachi selektivnoi flotatsii rud (Selective Ore Flotation: Current Situation and Challenges), Moscow: Nauka, 1967.

  48. Vigdergauz, V.E., Prospects of Reducing Molybdenum Loss with Flotation Fines, Advanced Processing Methods and Deep Conversion Technologies for Nonferrous, Rare and Platinum Metals. Plaksin’s Lectures–2006: Conference Proceedings, Krasnoyarsk: 2006, pp. 72–74.

  49. Ngobeni, W.A and Hangone, G., The Effect of Using Pure Thiol Collectors on the Froth Flotation on Pentlandite Containing Ore,South African J. Chem. Eng., 2013, vol. 18 (1), pp. 41–50.

    Google Scholar 

  50. Lipets, M.E., Hydrophobization Mechanism of Ionic Collectors in Flotation, Tsvet. Metally, 1945, no. 5, pp. 42–46.

  51. Bogdanov, O.S., Podnek, A.K., Khanmain, V.Ya., and Yanis, N.A., Theory and Technology of Flotation, Trudy Inst. Mekhanobr, 1959, issue 124.

  52. Leja, J., Surface Chemistry of Froth Flotation, Plenum Press, 1st Edition, New York and London, 1982.

  53. Rao, S.R. and Finch, J.A., Base Metal Oxide Flotation Using Long Chain Xanthates, Int. J. Miner. Process., 2003, vol. 69, pp. 251–258.

    Article  Google Scholar 

  54. Fuerstenau, M.C., Clifford, K.L., and Kuhn, M.C., The Role of Zinc–Xanthate Precipitation in Sphalerite Flotation, Int. J. Miner. Process., 1974, vol. 1, pp. 307–318.

    Article  Google Scholar 

  55. Chanturiya, V. and Kondratiev, S., Contemporary Understanding and Developments in the Flotation Theory of Non-Ferrous Ores,Miner. Process. Extr. Metall. Rev., 2019, vol. 40, issue 6, pp. 390–401.

    Article  Google Scholar 

  56. Aleinikov, N.A., Nikishin, G.I., Ogibin, Yu.P., and Petrov, A.D., Flotation Properties of Branched Carboxylic Aids, Zh. Prikl. Khim., 1962, vol. 35, no. 9, pp. 2078–2085.

  57. Rosen, M.J., The Relationship of Structure to Properties in Surfactants. IV. Effectiveness in Surface or Inter-Facial Tension Reduction, J. Colloid and Interface Sci., 1976, vol. 56, no. 2, pp. 320–327.

    Article  Google Scholar 

  58. Rosen, M.J., Surfactants and Interfacial Phenomena, Chapter 5: Reduction of Surface and Interfacial Tension by Surfactants, John Wiley & Sons, Inc., Hoboken, 2004, pp. 208–242.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kondrat’ev.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2021, No. 1, pp. 118-136. https://doi.org/10.15372/FTPRPI20210112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, S.A. ACTION OF PHYSISORBED COLLECTOR IN PARTICLE–BUBBLE ATTACHMENT. J Min Sci 57, 106–122 (2021). https://doi.org/10.1134/S1062739121010129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121010129

Keywords

Navigation