Skip to main content
Log in

High dielectric temperature stability and dielectric relaxation mechanism of (K0.5Na0.5)NbO3-LaBiO3 ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

(1–x)K0.5Na0.5NbO3-xLaBiO3 [(1–x)KNN-xLB, x = 0, 0.005, 0.015] lead-free ceramics were prepared via a solid-state reaction route. An orthorhombic symmetry was determined for all samples by the Rietveld refinement of XRD patterns. The 0.995KNN-0.005LB ceramic (KNN-5LB) exhibits an ultrahigh and stable relative permittivity (ε’ ~ 2158 ± 15%) with a low dielectric loss tangent (tanδ ≤ 3%) in a very broad operation temperature range from 172 °C to 450 °C due to two close diffuse phase transitions at ~200 °C and ~ 380 °C induced by La and an additional polarization from off-centered Bi ions. The Cole-Cole plot of iso-thermal complex impedance suggests that the high-temperature dielectric response of the KNN-5LB is attributed to the polarizations from grains, grain boundaries and electrode interfaces. Both the imaginary parts of impedance and modulus exhibit the thermally activated process and scaling behavior. The frequency dependent conductivity (σac) of the KNN-5LB follows the Universal Dielectric Response (UDR) law. The conduction mechanism is related to the small polaron hopping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Watson, G. Castro, A review of high-temperature electronics technology and applications. J. Mater. Sci. Mater. Electron. 26, 9226–9235 (2015)

    Article  CAS  Google Scholar 

  2. M. Pan, C.A. Randall, A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag. 26(3), 44–50 (2010)

    Article  CAS  Google Scholar 

  3. N. Raengthon, H. Brown-Shaklee, G. Brennecka, et al., Dielectric properties of BaTiO3-Bi(Zn1/2Ti1/2)O3-NaNbO3 solid solutions. J. Mater. Sci. 48(5), 2245–2250 (2013)

    Article  CAS  Google Scholar 

  4. R. Muhammad, Y. Iqbal, I. Reaney, BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for high temperature capacitor applications. J. Am. Ceram. Soc. 99(6), 2089–2095 (2016)

    Article  CAS  Google Scholar 

  5. G. Yao, X. Wang, T. Sun, L. Li, Effects of CaZrO3 on X8R non reducible BaTiO3-based dielectric ceramics. J. Am. Ceram. Soc. 94(11), 3856–3862 (2011)

    Article  CAS  Google Scholar 

  6. Q. Xu, Z. Song, W. Tang, H. Hao, L. Zhang, M. Appiah, M. Cao, Z. Yao, Z. He, H. Liu, Ultra-wide temperature stable dielectrics based on Bi0.5Na0.5TiO3- NaNbO3 system. J. Am. Ceram. Soc. 98, 3119–3126 (2015)

    Article  CAS  Google Scholar 

  7. A. Zeb, S. Jan, F. Bamiduro, D.A. Hall, S.J. Milne, Temperature-stable dielectric ceramics based on Na0.5Bi0.5TiO3. J. Eur. Ceram. Soc. 38, 1548–1555 (2018)

    Article  CAS  Google Scholar 

  8. X. Chen, Y. Wang, J. Chen, H. Zhou, L. Fang, L. Liu, C.A. Randall, Dielectric properties and impedance analysis of K0.5Na0.5NbO3-Ba2NaNb5O15 ceramics with good dielectric temperature stability. J. Am. Ceram. Soc. 96, 3489–3493 (2013)

    Article  CAS  Google Scholar 

  9. Z. Liu, H. Fan, S. Lei, X. Ren, C. Long, Duplex structure in K0.5Na0.5NbO3-SrZrO3 ceramics with temperature-stable dielectric properties. J. Eur. Ceram. Soc. 37(1), 115–122 (2017)

    Article  Google Scholar 

  10. T. Yan, F. Han, S. Ren, X. Ma, L. Fang, L. Liu, X. Kuang, B. Elouadi, Dielectric properties of (K0.5Na0.5)NbO3-(Bi0.5Li0.5)ZrO3 lead-free ceramics as high-temperature ceramic capacitors. Appl. Phys. A Mater. Sci. Process. 124(4), 338 (2018)

    Article  Google Scholar 

  11. R. Wang, M. Itoh, Phase diagram of (Na0.5K0.5)NbO3–(Bi0.5Na0.5)ZrO3 solid solution. J. Adv. Dielect. 06, 1650014 (2016)

  12. H. Cheng, H. Du, W. Zhou, D. Zhu, F. Luo, B. Xu, Bi(Zn2/3Nb1/3)O3-(K0.5Na0.5)NbO3 high-temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range. J. Am. Ceram. Soc. 96(3), 833–837 (2013)

    Article  CAS  Google Scholar 

  13. X. Chen, J. Chen, D. Ma, G. Huang, L. Fang, H. Zhou, High relative permittivity, low dielectric loss and good thermal stability of novel (K0.5Na0.5)NbO3-Bi(Zn0.75W0.25)O3 solid solution. Mater. Lett. 145, 247–249 (2015)

    Article  CAS  Google Scholar 

  14. D. Gao, K. Kwok, D. Lin, et al., Microstructure and electrical properties of La-modified K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J. Phys. D. Appl. Phys. 42, 035411 (2009)

    Article  Google Scholar 

  15. T. Yan, S. Ren, X. Ma, et al., Dielectric properties of (Bi0.5K0.5)ZrO3 modified (K0.5Na0.5)NbO3 ceramics as high-temperature ceramic capacitors. J. Electron. Mater. 47(12), 7106–7113 (2018)

    Article  CAS  Google Scholar 

  16. X. Chen, X. Yan, X. Li, G. Liu, J. Sun, X. Li, H. Zhou, Excellent temperature stability on relative permittivity, and conductivity behavior of K0.5Na0.5NbO3 based lead free ceramics. J. Alloys Compd. 762, 697–705 (2018)

    Article  CAS  Google Scholar 

  17. C. Long, T. Li, H. Fan, Y. Wu, L. Zhou, Y. Li, L. Xiao, Y. Li, Li-substituted K0.5Na0.5NbO3-based piezoelectric ceramics: Crystal structures and the effect of atmosphere on electrical properties. J. Alloys Compd. 658, 839–847 (2016)

    Article  CAS  Google Scholar 

  18. A.W. Hewat, Cubic-tetragonal-orthorhombic-rhombohedral ferroelectric transitions in perovskite potassium niobate: Neutron powder profile refinement of the structures. J. Phys. C Solid State Phys. 6(16), 2559–2572 (1973)

    Article  CAS  Google Scholar 

  19. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32(5), 751–767 (1976)

    Article  Google Scholar 

  20. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffusedphase-transition crystals. Ferroelectrics 44, 55 (2011)

    Google Scholar 

  21. L. Liu, X. Ma, M. Knapp, H. Ehrenberg, L. Fang, M. Hinterstein, Thermal evolution of polar nanoregions identified by the relaxation time of electric modulus in the Bi1/2Na1/2TiO3 system. Europhys. Lett. 118(4), 47001 (2017)

    Article  Google Scholar 

  22. L. Liu, M. Knapp, H. Ehrenberg, L. Fang, H. Fan, L.A. Schmitt, et al., Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3–Bi1/2Na1/2TiO3 system. J. Eur. Ceram. Soc. 37, 1387–1399 (2017)

    Article  CAS  Google Scholar 

  23. A. Zeb, S.J. Milne, High temperature dielectric ceramics: A review of temperature-stable high-permittivity perovskites. J. Mater. Sci. Mater. Electron. 26, 9243–9255 (2015)

    Article  CAS  Google Scholar 

  24. H.L. Du, W.C. Zhou, F. Luo, Phase structure, dielectric properties, and relaxor behavior of (K0.5Na0.5)NbO3-(Ba0.5Sr0.5)TiO3 lead-free solid solution for high temperature applications. J. Appl. Phys. 105, 124104 (2009)

    Article  Google Scholar 

  25. Z. Liu, H. Fan, M. Li, High temperature stable dielectric properties of (K0.5Na0.5)0.985Bi0.015Nb0.99Cu0.01O3 ceramics with core-shell microstructures. J. Mater. Chem. C 3, 5851–5858 (2015)

    Article  CAS  Google Scholar 

  26. H. Zhang, X. Li, X. Chen, H. Zhou, et al., Phase Structure, Raman Spectra, Microstructure, and Dielectric Properties of (K0.5Na0.5)NbO3-Bi(Li1/3Zr2/3)O3 Solid Solutions. J. Electron. Mater. 48, 4017–4024 (2019)

    Article  CAS  Google Scholar 

  27. A. Ortega, P. Kumar, S.B. Bhattacharya, Impedance spectroscopy of multiferroic PbZrxTi1-xO3/CoFe2O4 layered thin films. Phys. Rev. B 77(1), 014111 (2008)

    Article  Google Scholar 

  28. M.M. Rashad, H.M. El-Sayed, M. Rasly, A.A. Sattar, I.A. Ibrahim, Magnetic and dielectric properties of polycrystalline La doped barium Z-type hexaferrite for hyper-frequency applications. J. Mater. Sci. Mater. Electron. 24, 282–289 (2013)

    Article  CAS  Google Scholar 

  29. Y. Sun, H. Liu, H. Hao, et al., Effect of Oxygen Vacancy on Electrical Property of Acceptor Doped BaTiO3-Na0.5Bi0.5TiO3-Nb2O5 X8R Systems. J. Am. Ceram. Soc. 99, 3067–3073 (2016)

    Article  CAS  Google Scholar 

  30. J.J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12. Phys. Rev. B 70(14), 144106 (2004)

    Article  Google Scholar 

  31. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32(12), 3313–3323 (2012)

    Article  CAS  Google Scholar 

  32. T. Yan, X. Sun, J. Deng, S. Liu, F. Han, X. Liu, L. Fang, D. Lin, B. Peng, L. Liu, Dielectric and conductivity behavior of Mn-doped K0.5Na0.5NbO3 single crystal. Solid State Commun. 264, 1–5 (2017)

    Article  CAS  Google Scholar 

  33. S. Saha, T.P. Sinha, Low-temperature scaling behavior of BaFe0.5Nb0.5O3. Phys. Rev. B 65, 134103 (2002)

    Article  Google Scholar 

  34. L. Liu, H. Fan, L. Fang, X. Chen, H. Dammak, M. Pham-Thi, Effects of Na/K evaporation on electrical properties and intrinsic defects in Na0.5K0.5NbO3 ceramics. Mater. Chem. Phys. 117(1), 138–141 (2009)

    Article  CAS  Google Scholar 

  35. L. Liu, M. Wu, Y. Huang, Z. Yang, L. Fang, C. Hu, Frequency and temperature dependent dielectric and conductivity behavior of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 ceramic. Mater. Chem. Phys. 126(3), 769–772 (2011)

    Article  CAS  Google Scholar 

  36. O. Raymond, R. Font, N. Suarez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part II. Impedance spectroscopy characterization. J. Appl. Phys. 97, 084108 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Guangxi (Grant 2019GXNSFBA245069, AA138162, GA245006, and AA294014), the Middle-aged and Young Teachers’ Basic Ability Promotion Project of Guangxi (Grant 2019KY0290), Guilin University of Technology (Grant GUTQDJJ20176612037), the High Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes, open Research Program of Key Laboratory of RF Circuit and System, Ministry of Education, and Key Laboratory of Large Scale Integrated Design of ZheJiang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianxiang Yan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Yan, T., Chen, K. et al. High dielectric temperature stability and dielectric relaxation mechanism of (K0.5Na0.5)NbO3-LaBiO3 ceramics. J Electroceram 46, 72–82 (2021). https://doi.org/10.1007/s10832-021-00245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00245-8

Keywords

Navigation