Skip to main content

Advertisement

Log in

Multihop routing with static and distributed clustering in WSNs

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Nowadays, Wireless Sensor Networks are one of the fundamental infrastructures for IoT technology. Although WSN has been researched for a decade, providing energy efficiency for resource-constrained sensor nodes is still a hot topic given the widespread usage of real-time WSN applications. For ensuring scalability, recent studies focus on multi-hop routing schemes. In this paper, a fully distributed, multi-hop intra and inter-cluster communication based static clustering scheme (MI2RSDiC) is proposed for WSNs. Differently from the studies in literature, MI2RSDiC suggests a limited re-evaluation opportunity to the nodes in clustering phase for optimized decision, an adaptive threshold-based cluster head alteration for energy efficiency and a multi-hop communication at every transmission stage for supporting large-scale WSNs. The proposed approach is compared with recent approaches and the results show that MI2RSDiC yields the highest lifetime of the network with achieving the least energy consumption and the largest amount of collected data among the equivalent approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Tanwar, S., et al. (2018). LA-MHR: Learning automata based multilevel heterogeneous routing for opportunistic shared spectrum access to enhance lifetime of WSN. IEEE Systems Journal, 13(1), 313–323.

    Article  MathSciNet  Google Scholar 

  2. Sah, D. K., & Amgoth, T. (2020). Renewable energy harvesting schemes in wireless sensor networks: A survey. Information Fusion, 63, 223–247.

    Article  Google Scholar 

  3. Kumar, N., & Vidyarthi, D. P. (2018). A green routing algorithm for IoT-enabled software defined wireless sensor network. IEEE Sensors Journal, 18(22), 9449–9460.

    Article  Google Scholar 

  4. Durairaj, U. M., & Selvaraj, S. (2020). Two-level clustering and routing algorithms to prolong the lifetime of wind farm-based WSN. IEEE Sensors Journal, 21(1), 857–867.

    Article  Google Scholar 

  5. Li, Y., Hamed, E. A., Zhang, X., et al. (2020). Feasibility of harvesting solar energy for self-powered environmental wireless sensor nodes. Electronics, 9(12), 2058.

    Article  Google Scholar 

  6. Cengiz, K., & Dag, T. (2017). Energy aware multi-hop routing protocol for WSNs. IEEE Access, 6, 2622–2633.

    Article  Google Scholar 

  7. Ghosal, A., & Halder, S. (2015). Lifetime optimizing clustering structure using Archimedes’ spiral-based deployment in WSNs. IEEE Systems Journal, 11(2), 1039–1048.

    Article  Google Scholar 

  8. Alnawafa, E., & Marghescu, I. (2018). New energy efficient multi-hop routing techniques for wireless sensor networks: Static and dynamic techniques. Sensors, 18(6), 1863.

    Article  Google Scholar 

  9. Darabkh, K. A., et al. (2018). EA-CRP: A novel energy-aware clustering and routing protocol in wireless sensor networks. Computers and Electrical Engineering, 72, 702–718.

    Article  Google Scholar 

  10. Elsmany, E. F. A., et al. (2019). EESRA: Energy efficient scalable routing algorithm for wireless sensor networks. IEEE Access, 7, 96974–96983.

    Article  Google Scholar 

  11. Chen, D. R., et al. (2019). A coverage-aware and energy-efficient protocol for the distributed wireless sensor networks. Computer Communications, 137, 15–31.

    Article  Google Scholar 

  12. Sajwan, M., Gosain, D., & Sharma, A. K. (2019). CAMP: Cluster aided multi-path routing protocol for wireless sensor networks. Wireless Networks, 25(5), 2603–2620.

    Article  Google Scholar 

  13. Muthukumaran, K., Chitra, K., & Selvakumar, C. (2018). An energy efficient clustering scheme using multilevel routing for wireless sensor network. Computers and Electrical Engineering, 69, 642–652.

    Article  Google Scholar 

  14. Al-Sodairi, S., & Ouni, R. (2018). Reliable and energy-efficient multi-hop LEACH-based clustering protocol for wireless sensor networks. Sustainable Computing: Informatics and Systems, 20, 1–13.

    Google Scholar 

  15. Sert, S. A., Alchihabi, A., & Yazici, A. (2018). A two-tier distributed fuzzy logic based protocol for efficient data aggregation in multihop wireless sensor networks. IEEE Transactions on Fuzzy Systems, 26(6), 3615–3629.

    Article  Google Scholar 

  16. Sabet, M., & Naji, H. R. (2016). An energy efficient multi-level route-aware clustering algorithm for wireless sensor networks: A self-organized approach. Computers and Electrical Engineering, 56, 399–417.

    Article  Google Scholar 

  17. Lee, J. S., & Kao, T. Y. (2016). An improved three-layer low-energy adaptive clustering hierarchy for wireless sensor networks. IEEE Internet of Things Journal, 3(6), 951–958.

    Article  Google Scholar 

  18. Huynh, T. T., Dinh-Duc, A. V., & Tran, C. H. (2016). Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. Journal of Communications and Networks, 18(4), 580–588.

    Article  Google Scholar 

  19. Sabet, M., & Naji, H. R. (2015). A decentralized energy efficient hierarchical cluster-based routing algorithm for wireless sensor networks. AEU-International Journal of Electronics and Communications, 69(5), 790–799.

    Article  Google Scholar 

  20. Tarhani, M., Kavian, Y. S., & Siavoshi, S. (2014). SEECH: Scalable energy efficient clustering hierarchy protocol in wireless sensor networks. IEEE Sensors Journal, 14(11), 3944–3954.

    Article  Google Scholar 

  21. Abasikeles-Turgut, İ. (2019). Analysing multi-hop intra-cluster communication in cluster-based wireless sensor networks. Natural and Engineering Sciences, 4(3), 43–51.

  22. Jain, Y. K., & Bhandare, S. K. (2011). Min max normalization based data perturbation method for privacy protection. International Journal of Computer and Communication Technology, 2(8), 45–50.

    Google Scholar 

  23. Pachlor, R., & Shrimankar, D. (2018). LAR-CH: A cluster-head rotation approach for sensor networks. IEEE Sensors Journal, 18(23), 9821–9828.

    Article  Google Scholar 

  24. Darabkh, K. A., El-Yabroudi, M. Z., & El-Mousa, A. H. (2019). BPA-CRP: A balanced power-aware clustering and routing protocol for wireless sensor networks. Ad Hoc Networks, 82, 155–171.

    Article  Google Scholar 

  25. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2004). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  26. Gross, D. (2008). Fundamentals of Queuing theory. Wiley.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İpek Abasıkeleş-Turgut.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abasıkeleş-Turgut, İ. Multihop routing with static and distributed clustering in WSNs. Wireless Netw 27, 3797–3809 (2021). https://doi.org/10.1007/s11276-021-02683-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02683-2

Keywords

Navigation