Skip to main content
Log in

The Dirichlet problem for elliptic operators having a BMO anti-symmetric part

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The present paper establishes the first result on the absolute continuity of elliptic measure with respect to the Lebesgue measure for a divergence form elliptic operator with non-smooth coefficients that have a \({{\,\mathrm{BMO}\,}}\) anti-symmetric part. In particular, the coefficients are not necessarily bounded. We prove that the Dirichlet problem for elliptic equation \(\mathrm{div}(A\nabla u)=0\) in the upper half-space \((x,t)\in {\mathbb {R}}^{n+1}_+\) is uniquely solvable when \(n\ge 2\) and the boundary data is in \(L^p({\mathbb {R}}^n,dx)\) for some \(p\in (1,\infty )\). This result is equivalent to saying that the elliptic measure associated to L belongs to the \(A_\infty \) class with respect to the Lebesgue measure dx, a quantitative version of absolute continuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auscher, P., Egert, M., Nyström, K.: The Dirichlet problem for second order parabolic operators in divergence form. J. l’Ecole Polytech. 5, 407–441 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P.: The solution of the Kato square root problem for second order elliptic operators on \(\mathbb{R}^n\). Ann. Math. 156(2), 633–654 (2002)

    Article  MathSciNet  Google Scholar 

  3. Auscher, P., Hofmann, S., Lewis, J.L., Tchamitchian, P.: Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators. Acta Math. 187(2), 161–190 (2001)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L., Fabes, E., Mortola, S., Salsa, S.: Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana Univ. Math. J. 30(4), 621–640 (1981)

    Article  MathSciNet  Google Scholar 

  5. Caffarelli, L.A., Fabes, E.B., Kenig, C.E.: Completely singular elliptic-harmonic measures. Indiana Univ. Math. J. 30(6), 917–924 (1981)

    Article  MathSciNet  Google Scholar 

  6. Coifman, R., Lions, P., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72(9), 247–286 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Escauriaza, L., Hofmann, S.: Kato square root problem with unbounded leading coefficients. Proc. Am. Math. Soc. 146(12), 5295–5310 (2018)

    Article  MathSciNet  Google Scholar 

  8. Evans, L.C.: Partial Differential Equations, vol. 19. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  9. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, vol. 105. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  10. Hofmann, S., Kenig, C., Mayboroda, S., Pipher, J.: Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators. J. Am. Math. Soc. 28(2), 483–529 (2015)

    Article  MathSciNet  Google Scholar 

  11. Hofmann, S., Lacey, M., McIntosh, A.: The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds. Ann. Math. 156, 623–631 (2002)

    Article  MathSciNet  Google Scholar 

  12. Hofmann, S., Le, P., Morris, A.J.: Carleson measure estimates and the Dirichlet problem for degenerate elliptic equations. Anal. PDE 12(8), 2095–2146 (2019)

    Article  MathSciNet  Google Scholar 

  13. Hofmann, S., Li, L., Mayboroda, S., Pipher, J.: \(L^p\) theory for the square roots and square functions of elliptic operators having a BMO anti-symmetric part. arXiv preprint arXiv:1908.01030 (2019)

  14. Jerison, D.S., Kenig, C.E.: The Dirichlet problem in non-smooth domains. Ann. Math. 113(2), 367–382 (1981)

    Article  MathSciNet  Google Scholar 

  15. Kenig, C., Kirchheim, B., Pipher, J., Toro, T.: Square functions and the \(A_{\infty }\) property of elliptic measures. J. Geom. Anal. 26(3), 2383–2410 (2016)

    Article  MathSciNet  Google Scholar 

  16. Kenig, C., Koch, H., Pipher, J., Toro, T.: A new approach to absolute continuity of elliptic measure, with applications to non-symmetric equations. Adv. Math. 153(2), 231–298 (2000)

    Article  MathSciNet  Google Scholar 

  17. Kenig, C.E.: Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, vol. 83. American Mathematical Society, Providence (1994)

    Book  Google Scholar 

  18. Li, L., Pipher, J.: Boundary behavior of solutions of elliptic operators in divergence form with a BMO anti-symmetric part. Commun. Partial Differ. Equ. 44(2), 156–204 (2019)

    Article  MathSciNet  Google Scholar 

  19. Lieberman, G.M.: Second order Parabolic Differential Equations. World Scientific, Singapore (1996)

    Book  Google Scholar 

  20. Modica, L., Mortola, S.: Construction of a singular elliptic-harmonic measure. Manuscr. Math. 33(1), 81–98 (1980)

    Article  MathSciNet  Google Scholar 

  21. Qian, Z., Xi, G.: Parabolic equations with singular divergence-free drift vector fields. J. Lond. Math. Soc. 100(1), 17–40 (2019)

    Article  MathSciNet  Google Scholar 

  22. Seregin, G., Silvestre, L., Šverák, V., Zlatoš, A.: On divergence-free drifts. J. Differ. Equ. 252(1), 505–540 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for a careful review and for insightful comments and questions on the manuscript that have allowed us to improve and clarify the exposition, and to correct some omissions. In particular, we thank the referee for noting that our proof of uniqueness actually yields a stronger Fatou-type theorem, which, following the referee’s suggestion, we have now formulated as our Theorem 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linhan Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Loukas Grafakos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. Hofmann acknowledges support of the National Science Foundation (Grant number DMS-1664047, DMS-2000048). S. Mayboroda is supported in part by the NSF RAISE-TAQS Grant DMS-1839077 and the Simons foundation Grant 563916, SM.

A Appendix: Weak solution of parabolic equations

A Appendix: Weak solution of parabolic equations

Lemma 15

Suppose \(u,v\in L^2\left( (0,T),W^{1,2}({\mathbb {R}}^n)\right) \) with \(\partial _tu, \partial _tv \in L^2\left( (0,T),\widetilde{W}^{-1,2}({\mathbb {R}}^n)\right) \). Then

  1. (i)

    \(u\in C\left( [0,T], L^2({\mathbb {R}}^n)\right) \);

  2. (ii)

    The mapping \(t\mapsto \left\| u(\cdot ,t)\right\| _{L^2({\mathbb {R}}^n)}\) is absolutely continuous, with

    $$\begin{aligned}\frac{d}{dt}\left\| u(\cdot ,t)\right\| _{L^2({\mathbb {R}}^n)}^2=2\mathfrak {R}\langle \partial _tu(\cdot ,t),u(\cdot ,t)\rangle _{{\widetilde{W}}^{-1,2},W^{1,2}} \quad \text {for a.e. }t\in [0,T].\end{aligned}$$

    As a consequence,

    $$\begin{aligned} \frac{d}{dt}\left( u(\cdot ,t),v(\cdot ,t)\right) _{L^2({\mathbb {R}}^n)}=\langle \partial _tu(\cdot ,t),v(\cdot ,t)\rangle _{{\widetilde{W}}^{-1,2},W^{1,2}}+\overline{\langle {\partial _tv(\cdot ,t),u(\cdot ,t)\rangle }}_{\widetilde{W}^{-1,2},W^{1,2}}\,\text {a.e.} \end{aligned}$$

For the proof see, e.g., [8], Section 5.9.2, Theorem 3.

Suppose that \(A=A(x)=A^s(x)+A^a(x)\) is a real, \(n\times n\) matrix, with \(A^s\) being symmetric, elliptic with constant \(\lambda _0>0\), \(\left\| A^s\right\| _{L^{\infty }({\mathbb {R}}^n)}\le \lambda _0^{-1}\), and \(A^a\) being anti-symmetric and \(\left\| A^a\right\| _{{{\,\mathrm{BMO}\,}}({\mathbb {R}}^n)}\le \Lambda _0\).

Proposition 13

For any \(u_0\in L^2({\mathbb {R}}^n)\), the initial value problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _tu-{{\,\mathrm{div}\,}}(A\nabla u)=0 \quad \text {in }{\mathbb {R}}^n\times (0,\infty ),\\ u(x,0)=u_0(x), \end{array}\right. } \end{aligned}$$
(A.1)

has a unique weak solution \(u(x,t)=e^{-tL}(u_0)(x)\). Here, \({{\,\mathrm{div}\,}}={{\,\mathrm{div}\,}}_x\) and \(\nabla =\nabla _x\).

Proof

Existence.

Since the domain of L (denoted by D(L)) is dense in \(W^{1,2}({\mathbb {R}}^n)\), and thus dense in \(L^2({\mathbb {R}}^n)\), we can find a sequence \(\left\{ u_{0,\epsilon }\right\} \subset D(L)\) such that \(u_{0,\epsilon }\) converges to \(u_0\) in \(L^2({\mathbb {R}}^n)\). Denote \(u_\epsilon (x,t):=e^{-tL}(u_{0,\epsilon })(x)\). Then by semigroup theory,

$$\begin{aligned} \partial _tu_\epsilon +Lu_\epsilon =0 \quad \text {in } L^2({\mathbb {R}}^n) \quad \forall \, t\ge 0. \end{aligned}$$
(A.2)

For any \(0<\tau <T\), and any \(\varphi \in L^2\left( (0,T),W^{1,2}({\mathbb {R}}^n)\right) \), with \(\partial _t\varphi \in L^2\left( (0,T),\widetilde{W}^{-1,2}({\mathbb {R}}^n)\right) \), (A.2) implies

$$\begin{aligned} \int _{\tau }^{T}\left( \partial _tu_\epsilon ,\varphi \right) _{L^2}dt+\int _{\tau }^T\left( Lu_\epsilon ,\varphi \right) _{L^2}dt=0. \end{aligned}$$
(A.3)

Since \(\partial _tu_\epsilon \in L^2_{{{\,\mathrm{loc\ }\,}}}\left( (0,\infty ),L^2({\mathbb {R}}^n)\right) \) (see [13] Theorem 4.9), and by Lemma 15 (ii), (A.3) can be written as

$$\begin{aligned}&\int _{{\mathbb {R}}^n}u_\epsilon (x,T)\overline{\varphi (x,T)}dx+\int _{\tau }^T\int _{{\mathbb {R}}^n}A\nabla u_\epsilon \cdot \overline{\nabla \varphi }dxdt\nonumber \\&\quad =\int _{{\mathbb {R}}^n}u_\epsilon (x,\tau )\overline{\varphi (x,\tau )}dx+\int _{\tau }^T\overline{\langle \partial _t\varphi ,u_\epsilon \rangle }_{\widetilde{W}^{-1,2},W^{1,2}}. \end{aligned}$$
(A.4)

Notice that \(u_\epsilon \rightarrow u\) in \(C((\tau ,T),W^{1,2}({\mathbb {R}}^n))\) (see [13] Theorem 4.9), and so letting \(\epsilon \rightarrow 0^+\) we get

$$\begin{aligned}&\int _{{\mathbb {R}}^n}u(x,T)\overline{\varphi (x,T)}dx+\int _{\tau }^T\int _{{\mathbb {R}}^n}A\nabla u\cdot \overline{\nabla \varphi }dxdt\nonumber \\&\quad =\int _{{\mathbb {R}}^n}u(x,\tau )\overline{\varphi (x,\tau )}dx+\int _{\tau }^T\overline{\langle \partial _t\varphi ,u\rangle }_{\widetilde{W}^{-1,2},W^{1,2}}. \end{aligned}$$
(A.5)

Letting \(\varphi =u_\epsilon \) in (A.4) and applying Lemma 15 (ii) again, one obtains

$$\begin{aligned} \int _{{\mathbb {R}}^n}\left| u_\epsilon (x,T)\right| ^2dx+2\mathfrak {R}\int _{\tau }^T\int _{{\mathbb {R}}^n}A\nabla u_\epsilon \cdot \overline{\nabla u_\epsilon }dxdt =\int _{{\mathbb {R}}^n}\left| u_\epsilon (x,\tau )\right| ^2dx. \end{aligned}$$

By ellipticity and the definition of \(u_\epsilon \), we have

$$\begin{aligned}&2\lambda _0\int _{\tau }^T\int _{{\mathbb {R}}^n}\left| \nabla u_\epsilon \right| ^2dxdt\le \left\| e^{-\tau L}(u_{0,\epsilon })\right\| _{L^2({\mathbb {R}}^n)}^2\\&\quad \le 2\left\| e^{-\tau L}(u_{0,\epsilon }-u_0)\right\| _{L^2({\mathbb {R}}^n)}^2+2\left\| e^{-\tau L}(u_{0})\right\| _{L^2({\mathbb {R}}^n)}^2. \end{aligned}$$

Letting \(\epsilon \rightarrow 0^+\), \(\tau \rightarrow 0^+\), \(T\rightarrow \infty \), we obtain \(\int _0^{\infty }\int _{{\mathbb {R}}^n}\left| \nabla u\right| ^2dxdt\le \lambda _0^{-1}\left\| u_0\right\| _{L^2}^2<\infty \). This enables us to take limit as \(\tau \) go to \(0^+\) on both sides of (A.5) and get

$$\begin{aligned}&\int _{{\mathbb {R}}^n}u(x,T)\overline{\varphi (x,T)}dx+\int _0^T\int _{{\mathbb {R}}^n}A\nabla u\cdot \overline{\nabla \varphi }dxdt\\&\quad =\int _{{\mathbb {R}}^n}u(x,0)\overline{\varphi (x,0)}dx+\int _0^T\overline{\langle \partial _t\varphi ,u\rangle }_{\widetilde{W}^{-1,2},W^{1,2}}, \end{aligned}$$

i.e. u(xt) is a weak solution of (A.1).

Uniqueness.

Let v be a weak solution of (A.1). We first show that \(\partial _tv\in L^2\left( (0,T),\widetilde{W}^{-1,2}({\mathbb {R}}^n)\right) \) for any \(T\in (0,\infty )\). Define a semilinear functional F on \(L^2\left( [0,T],W^{1,2}({\mathbb {R}}^n)\right) \) as follows: for any \(\varphi \in L^2\left( [0,T],W^{1,2}({\mathbb {R}}^n)\right) \), let

$$\begin{aligned} \langle F,\varphi \rangle :=\int _0^T\int _{{\mathbb {R}}^n}A\nabla v\cdot \overline{\nabla \varphi }dxdt. \end{aligned}$$

Obviously,

$$\begin{aligned} \left| \langle F,\varphi \rangle \right| \le C\left\| \nabla v\right\| _{L^2\left( [0,T],L^2({\mathbb {R}}^n)\right) }\left\| \nabla \varphi \right\| _{L^2\left( [0,T],L^2({\mathbb {R}}^n)\right) }. \end{aligned}$$

Then by Riesz representation theorem, there exists \(w(x,t)\in L^2\left( [0,T],W^{1,2}({\mathbb {R}}^n)\right) \) such that

$$\begin{aligned} \langle F,\varphi \rangle&=\int _0^T\int _{{\mathbb {R}}^n}(\nabla w\cdot \nabla {\overline{\varphi }}+w{\overline{\varphi }})dxdt\\&=\int _0^T\langle -\Delta w(\cdot ,t)+w(\cdot ,t),\varphi \rangle _{{\widetilde{W}}^{-1,2},W^{1,2}}dt, \end{aligned}$$

and

$$\begin{aligned} \left\| -\Delta w+w\right\| _{L^2\left( [0,T],\widetilde{W}^{-1,2}({\mathbb {R}}^n)\right) }\le \left\| w\right\| _{L^2([0,T],W^{1,2}({\mathbb {R}}^n))}\le C\left\| \nabla v\right\| _{L^2\left( [0,T],L^2({\mathbb {R}}^n)\right) }. \end{aligned}$$

Choose \(\varphi (x,t)=\Psi (x){\overline{\eta }}(t)\) as a test function in (A.1), where \(\Psi \in W^{1,2}({\mathbb {R}}^n)\), \(\eta \in C_0^1\left( (0,T)\right) \). Then since v is a weak solution, we have

$$\begin{aligned} \int _0^T\left( v(\cdot ,t),\Psi \right) _{L^2}\eta '(t)dt&=\int _0^T\int _{{\mathbb {R}}^n}A\nabla v\cdot \overline{\nabla \Psi }\eta (t)dxdt\\&=\int _0^T\langle -\Delta w(\cdot ,t)+w(\cdot ,t),\Psi \rangle _{{\widetilde{W}}^{-1,2},W^{1,2}}\eta (t)dt. \end{aligned}$$

Since \(\Psi \in W^{1,2}({\mathbb {R}}^n)\) is arbitrary,

$$\begin{aligned} \int _0^Tv(x,t)\eta '(t)dt=\int _0^T(-\Delta w+w)\eta (t)dt\qquad \text {in }\widetilde{W}^{-1,2}({\mathbb {R}}^n), \end{aligned}$$

which gives \(\partial _tv=\Delta w-w\in L^2\left( (0,T),\widetilde{W}^{-1,2}({\mathbb {R}}^n)\right) \). Therefore, we can take \(\varphi =v\) as a test function in (A.1) and get

$$\begin{aligned} \int _{{\mathbb {R}}^n}\left| v(x,T)\right| ^2+\int _0^T\int _{{\mathbb {R}}^n}A\nabla v\cdot \nabla {\overline{v}}dxdt\!=\!\int _0^T\overline{\langle \partial _tv,v\rangle }_{\widetilde{W}^{\!-\!1,2},W^{1,2}}\!+\!\int _{{\mathbb {R}}^n}\left| v(x,0)\right| ^2dx. \end{aligned}$$

Using this and Lemma 15 (ii), we have

$$\begin{aligned} \int _{{\mathbb {R}}^n}\left| v(x,T)\right| ^2+2\mathfrak {R}\int _0^T\int _{{\mathbb {R}}^n}A\nabla v\cdot \nabla {\overline{v}}dxdt=\int _{{\mathbb {R}}^n}\left| v(x,0)\right| ^2dx. \end{aligned}$$

So we get

$$\begin{aligned} \int _{{\mathbb {R}}^n}\left| v(x,T)\right| ^2+2\lambda _0\int _0^T\int _{{\mathbb {R}}^n}\left| \nabla v\right| ^2dxdt \le \int _{{\mathbb {R}}^n}\left| v(x,0)\right| ^2dx, \end{aligned}$$

which implies that if \(v(x,0)=0\) then \(v\equiv 0\). \(\square \)

Remark 3

Let u(xt) be the weak solution to (A.1). Since the coefficients are independent of t, a standard argument shows that \(\partial _tu\) is a weak solution to \(\partial _tv-{{\,\mathrm{div}\,}}(A\nabla v)=0\) in \({\mathbb {R}}^n\times (0,\infty )\). That is, for any \(T>0\), any \(\varphi \in L^2\left( [0,T],W^{1,2}({\mathbb {R}}^n)\right) \) with \(\partial _t\varphi \in L^2\left( [0,T],\widetilde{W}^{-1,2}({\mathbb {R}}^n)\right) \) and \(\varphi =0\) when \(0\le t\le \varepsilon \) for some \(0<\varepsilon <T\),

$$\begin{aligned} \int _{{\mathbb {R}}^n}\partial _tu(x,T)\overline{\varphi (x,T)}dx+\int _0^T\int _{{\mathbb {R}}^n}A\nabla (\partial _tu)\cdot \overline{\nabla \varphi }dxdt=\int _0^T\overline{\langle \partial _t\varphi ,\partial _tu\rangle }_{\widetilde{W}^{-1,2},W^{1,2}}dt. \end{aligned}$$

Moreover, since \(\partial _t^lu\in L^2_{{{\,\mathrm{loc\ }\,}}}\left( (0,\infty ),L^2({\mathbb {R}}^n)\right) \) and \(\partial _t^l\nabla u\in L^2_{{{\,\mathrm{loc\ }\,}}}\left( (0,\infty ),L^2({\mathbb {R}}^n)\right) \) for any \(l\in {\mathbb {N}}\), one can show that for any \(l\in {\mathbb {N}}\), \(\partial _t^l u\) is a weak solution to \(\partial _tv-{{\,\mathrm{div}\,}}(A\nabla v)=0\) in \({\mathbb {R}}^n\times (0,\infty )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, S., Li, L., Mayboroda, S. et al. The Dirichlet problem for elliptic operators having a BMO anti-symmetric part. Math. Ann. 382, 103–168 (2022). https://doi.org/10.1007/s00208-021-02219-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02219-1

Navigation