Skip to main content

Advertisement

Log in

Genotype/Phenotype Interactions and First Steps Toward Targeted Therapy for Sphingosine Phosphate Lyase Insufficiency Syndrome

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is a rare metabolic disorder caused by a deficiency in sphingosine-1-phosphate lyase (SPL), the final enzyme in the sphingolipid degradative pathway. Inactivating mutations of SGPL1—the gene encoding SPL—lead to a deficiency of its downstream products, and buildup of sphingolipid intermediates, including its bioactive substrate, sphingosine-1-phosphate (S1P), the latter causing lymphopenia, a hallmark of the disease. Other manifestations of SPLIS include nephrotic syndrome, neuronal defects, and adrenal insufficiency, but their pathogenesis remains unknown. In this report, we describe the correlation between SGPL1 genotypes, age at diagnosis, and patient outcome. Vitamin B6 serves as a cofactor for SPL. B6 supplementation may aid some SPLIS patients by overcoming poor binding kinetics and promoting proper folding and stability of mutant SPL proteins. However, this approach remains limited to patients with a susceptible allele. Gene therapy represents a potential targeted therapy for SPLIS patients harboring B6-unresponsive missense mutations, truncations, deletions, and splice-site mutations. When Sgpl1 knockout (SPLKO) mice that model SPLIS were treated with adeno-associated virus (AAV)-mediated SGPL1 gene therapy, they showed profound improvement in survival and kidney and neurological function compared to untreated SPLKO mice. Thus, gene therapy appears promising as a universal, potentially curative treatment for SPLIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

adeno-associated virus:

AAV

absolute lymphocyte count:

ALC

endoplasmic reticulum:

ER

focal segmental glomerulosclerosis:

FSGS

next generation sequencing:

NGS

pyridoxal 5’-phosphate:

PLP

sphingosine-1-phosphate:

S1P

sphingosine phosphate lyase:

SPL

References

  1. Stoffel, W., LeKim, D., & Sticht, G. (1969). Distribution and properties of dihydrosphingosine-1-phosphate aldolase (sphinganine-1-phosphate alkanal-lyase). Hoppe-Seylers Zeitschrift fur Physiologische Chemie, 350, 1233–1241.

    Article  CAS  Google Scholar 

  2. Serra, M., & Saba, J. D. (2010). Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Advances in Enzyme Regulation, 50, 349–362.

    Article  PubMed  Google Scholar 

  3. Chipuk, J. E., McStay, G. P., Bharti, A., Kuwana, T., Clarke, C. J., Siskind, L. J., Obeid, L. M., & Green, D. R. (2012). Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell, 148, 988–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ebenezer, D. L., Fu, P., Suryadevara, V., Zhao, Y., & Natarajan, V. (2017). Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (S1P) in acute lung injury: role of S1P lyase. Advances in Biological Regulation, 63, 156–166.

    Article  CAS  PubMed  Google Scholar 

  5. Mitroi, D. N., Karunakaran, I., Graler, M., Saba, J. D., Ehninger, D., Ledesma, M. D., & van Echten-Deckert, G. (2017). SGPL1 (sphingosine phosphate lyase 1) modulates neuronal autophagy via phosphatidylethanolamine production. Autophagy, 13, 885–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Upadhyaya, P., Kumar, A., Byun, H. S., Bittman, R., Saba, J. D., & Hecht, S. S. (2012). The sphingolipid degradation product trans-2-hexadecenal forms adducts with DNA. Biochemical and Biophysical Research Communications, 424, 18–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar, A., Byun, H. S., Bittman, R., & Saba, J. D. (2011). The sphingolipid degradation product trans-2-hexadecenal induces cytoskeletal reorganization and apoptosis in a JNK-dependent manner. Cellular Signalling, 23, 1144–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, K., Pompey, J., Hsu, F., Turk, J., Bandhuvula, P., Saba, J., & Beverley, S. (2007). Redirection of sphingolipid metabolism towards de novo synthesis of ethanolamine in Leishmania. EMBO Journal, 26, 1094–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schumacher, F., Neuber, C., Finke, H., Nieschalke, K., Baesler, J., Gulbins, E., & Kleuser, B. (2017). The sphingosine 1-phosphate breakdown product, (2E)-hexadecenal, forms protein adducts and glutathione conjugates in vitro. Journal of Lipid Research, 58, 1648–1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dixit, D., Okuniewska, M., & Schwab, S. R. (2019). Secrets and lyase: control of sphingosine 1-phosphate distribution. Immunological Review, 289, 173–185.

    Article  CAS  Google Scholar 

  11. Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzeleev, R., Spiegel, S., & Hla, T. (1998). Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science, 279, 1552–1555.

    Article  CAS  PubMed  Google Scholar 

  12. Garris, C. S., Blaho, V. A., Hla, T., & Han, M. H. (2014). Sphingosine-1-phosphate receptor 1 signalling in T cells: trafficking and beyond. Immunology, 142, 347–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matloubian, M., Lo, C. G., Cinamon, G., Lesneski, M. J., Xu, Y., Brinkmann, V., Allende, M. L., Proia, R. L., & Cyster, J. G. (2004). Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 427, 355–360.

    Article  CAS  PubMed  Google Scholar 

  14. Schwab, S., Pereira, J., Matloubian, M., Xu, Y., Huang, Y., & Cyster, J. (2005). Lymphocyte sequestration through S1P lyase inhibition an disruption of S1P gradients. Science, 309, 1735–1739.

    Article  CAS  PubMed  Google Scholar 

  15. Kunkel, G. T., Maceyka, M., Milstien, S., & Spiegel, S. (2013). Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nature Reviews Drug Discovery, 12, 688–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, H., Deng, J., Kujawski, M., Yang, C., Liu, Y., Herrmann, A., Kortylewski, M., Horne, D., Somlo, G., Forman, S., Jove, R., & Yu, H. (2010). STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nature Medicine, 16, 1421–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alvarez, S. E., Harikumar, K. B., Hait, N. C., Allegood, J., Strub, G. M., Kim, E. Y., Maceyka, M., Jiang, H., Luo, C., Kordula, T., Milstien, S., & Spiegel, S. (2010). Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature, 465, 1084–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hait, N. C., Allegood, J., Maceyka, M., Strub, G. M., Harikumar, K. B., Singh, S. K., Luo, C., Marmorstein, R., Kordula, T., Milstien, S., & Spiegel, S. (2009). Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science, 325, 1254–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, S., & Spiegel, S. (1996). Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature, 381, 800–803.

    Article  CAS  PubMed  Google Scholar 

  20. Cuvillier, O., Rosenthal, D. S., Smulson, M. E., & Spiegel, S. (1998). Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide- mediated apoptosis in Jurkat T lymphocytes. Journal of Biological Chemistry, 273, 2910–2916.

    Article  CAS  PubMed  Google Scholar 

  21. Xia, P., Gamble, J. R., Wang, L., Pitson, S. M., Moretti, P. A., Wattenberg, B. W., D’Andrea, R. J., & Vadas, M. A. (2000). An oncogenic role of sphingosine kinase. Current Biology, 10, 1527–1530.

    Article  CAS  PubMed  Google Scholar 

  22. Colie, S., Van Veldhoven, P. P., Kedjouar, B., Bedia, C., Albinet, V., Sorli, S. C., Garcia, V., Djavaheri-Mergny, M., Bauvy, C., Codogno, P., Levade, T., & Andrieu-Abadie, N. (2009). Disruption of sphingosine 1-phosphate lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. Cancer Research, 69, 9346–9353.

    Article  CAS  PubMed  Google Scholar 

  23. Degagné, E., Pandurangan, A., Bandhuvula, A., Kumar, A., Eltanawy, A., Zhang, M., Yoshinaga, Y., Nefedov, M., de Jong, P., Fong, L., Young, S., Bittman, R., Ahmedi, Y., & Saba, J. (2014). Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs. Journal of Clinical Investigation, 124, 5368–5384.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Oskouian, B., Sooriyakumaran, P., Borowsky, A., Crans, A., Dillard-Telm, L., Tam, Y., Bandhuvula, P., & Saba, J. (2006). Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is downregulated in colon cancer. Proceedings of the National Academy of Sciences of the United States America, 103, 17384–17389.

    Article  CAS  Google Scholar 

  25. Zhao, Y., Gorshkova, I. A., Berdyshev, E., He, D., Fu, P., Ma, W., Su, Y., Usatyuk, P. V., Pendyala, S., Oskouian, B., Saba, J. D., Garcia, J. G., & Natarajan, V. (2011). Protection of LPS-induced murine acute lung injury by sphingosine-1-phosphate lyase suppression. American Journal of Respiratory Cell and Molecular Biology, 45, 426–435.

    Article  CAS  PubMed  Google Scholar 

  26. Min, J., Van Veldhoven, P. P., Zhang, L., Hanigan, M. H., Alexander, H., & Alexander, S. (2005). Sphingosine-1-phosphate lyase regulates sensitivity of human cells to select chemotherapy drugs in a p38-dependent manner. Molecular Cancer Research, 3, 287–296.

    Article  CAS  PubMed  Google Scholar 

  27. Ihlefeld, K., Claas, R. F., Koch, A., Pfeilschifter, J. M., & Meyer Zu Heringdorf, D. (2012). Evidence for a link between histone deacetylation and Ca2+ homoeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts. Biochemistry Journal, 447, 457–464.

  28. Saba, J. D., Nara, F., Bielawska, A., Garrett, S., & Hannun, Y. A. (1997). The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. Journal of Biological Chemistry, 272, 26087–26090.

    Article  CAS  PubMed  Google Scholar 

  29. Ikeda, M., Kihara, A., & Igarashi, Y. (2004). Sphingosine-1-phosphate lyase (SPL) is an endoplasmic reticulum-resident, integral membrane protein with the pyridoxal 5’-phosphate binding domain exposed to the cytosol. Biochemical and Biophysical Research Communication, 325, 338–343.

    Article  CAS  Google Scholar 

  30. Bourquin, F., Riezman, H., Capitani, G., & Grutter, M. G. (2010). Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism. Structure, 18, 1054–1065.

    Article  CAS  PubMed  Google Scholar 

  31. Saba, J. D. (2019). Fifty years of lyase and a moment of truth: sphingosine phosphate lyase from discovery to disease. Journal of Lipid Research, 60, 456–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weaver, K. N., Sullivan, B., Hildebrandt, F., Strober, J., Cooper, M., Prasad, R., & Saba, J. (2020). Sphingosine phosphate lyase insufficiency syndrome. In Adam, M. P., Ardinger, H. H., Pagon, R. A., Wallace, S.E., Bean, L. J. H., Stephens, K., & Amemiya, A. (Eds.), GeneReviews® [Internet]. Seattle, WA: University of Washington, Seattle; 1993–2021. 15 Oct 2020.

  33. Lovric, S., Goncalves, S., Gee, H. Y., Oskouian, B., Srinivas, H., Choi, W. I., Shril, S., Ashraf, S., Tan, W., Rao, J., Airik, M., Schapiro, D., Braun, D. A., Sadowski, C. E., Widmeier, E., Jobst-Schwan, T., Schmidt, J. M., Girik, V., Capitani, G., Suh, J. H., Lachaussee, N., Arrondel, C., Patat, J., Gribouval, O., Furlano, M., Boyer, O., Schmitt, A., Vuiblet, V., Hashmi, S., Wilcken, R., Bernier, F. P., Innes, A. M., Parboosingh, J. S., Lamont, R. E., Midgley, J. P., Wright, N., Majewski, J., Zenker, M., Schaefer, F., Kuss, N., Greil, J., Giese, T., Schwarz, K., Catheline, V., Schanze, D., Franke, I., Sznajer, Y., Truant, A. S., Adams, B., Desir, J., Biemann, R., Pei, Y., Ars, E., Lloberas, N., Madrid, A., Dharnidharka, V. R., Connolly, A. M., Willing, M. C., Cooper, M. A., Lifton, R. P., Simons, M., Riezman, H., Antignac, C., Saba, J. D., & Hildebrandt, F. (2017). Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. Journal of Clinical Investigation, 127, 912–928.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Prasad, R., Hadjidemetriou, I., Maharaj, A., Meimaridou, E., Buonocore, F., Saleem, M., Hurcombe, J., Bierzynska, A., Barbagelata, E., Bergada, I., Cassinelli, H., Das, U., Krone, R., Hacihamdioglu, B., Sari, E., Yesilkaya, E., Storr, H. L., Clemente, M., Fernandez-Cancio, M., Camats, N., Ram, N., Achermann, J. C., Van Veldhoven, P. P., Guasti, L., Braslavsky, D., Guran, T., & Metherell, L. A. (2017). Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. Journal of Clinical Investigation, 127, 942–953.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Martin, K. W., Weaver, N., Alhasan, K., Gumus, E., Sullivan, B. R., Zenker, M., Hildebrandt, F., & Saba, J. D. (2020). MRI spectrum of brain involvement in sphingosine-1-phosphate lyase insufficiency syndrome. American Journal of Neuroradiology, 41, 1943–1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao, P., Liu, I. D., Hodgin, J. B., Benke, P. I., Selva, J., Torta, F., Wenk, M. R., Endrizzi, J. A., West, O., Ou, W., Tang, E., Goh, D. L., Tay, S. K., Yap, H. K., Loh, A., Weaver, N., Sullivan, B., Larson, A., Cooper, M. A., Alhasan, K., Alangari, A. A., Salim, S., Gumus, E., Chen, K., Zenker, M., Hildebrandt, F., & Saba, J. D. (2020). Responsiveness of sphingosine phosphate lyase insufficiency syndrome to vitamin B6 cofactor supplementation. Journal of Inherited Metabolic Disease, 43, 1131–1142.

  37. Janecke, A. R., Xu, R., Steichen-Gersdorf, E., Waldegger, S., Entenmann, A., Giner, T., Krainer, I., Huber, L. A., Hess, M. W., Frishberg, Y., Barash, H., Tzur, S., Schreyer-Shafir, N., Sukenik-Halevy, R., Zehavi, T., Raas-Rothschild, A., Mao, C., & Muller, T. (2017). Deficiency of the sphingosine-1-phosphate lyase SGPL1 is associated with congenital nephrotic syndrome and congenital adrenal calcifications. Human Mutation, 38, 365–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Atkinson, D., Nikodinovic Glumac, J., Asselbergh, B., Ermanoska, B., Blocquel, D., Steiner, R., Estrada-Cuzcano, A., Peeters, K., Ooms, T., De Vriendt, E., Yang, X. L., Hornemann, T., Milic Rasic, V., & Jordanova, A. (2017). Sphingosine 1-phosphate lyase deficiency causes Charcot-Marie-Tooth neuropathy. Neurology, 88, 533–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bamborschke, D., Pergande, M., Becker, K., Koerber, F., Dotsch, J., Vierzig, A., Weber, L. T., & Cirak, S. (2018). A novel mutation in sphingosine-1-phosphate lyase causing congenital brain malformation. Brain Development, 40, 480–483.

    Article  PubMed  Google Scholar 

  40. Settas, N., Persky, R., Faucz, F. R., Sheanon, N., Voutetakis, A., Lodish, M., Metherell, L. A., & Stratakis, C. A. (2018). SGPL1 deficiency: a rare cause of primary adrenal insufficiency. Journal of Clinical Endocrinology and Metabolism, 104, 1484–1490.

  41. Maharaj, A., Theodorou, D., Banerjee, I. I., Metherell, L. A., Prasad, R., & Wallace, D. (2020). A sphingosine-1-phosphate lyase mutation associated with congenital nephrotic syndrome and multiple endocrinopathy. Frontiers in Pediatrics, 8, 151.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Saygili, S., Canpolat, N., Sever, L., Caliskan, S., Atayar, E., & Ozaltin, F. (2019). Persistent hypoglycemic attacks during hemodialysis sessions in an infant with congenital nephrotic syndrome: answers. Pediatric Nephrology, 34, 77–79.

    Article  PubMed  Google Scholar 

  43. Linhares, N. D., Arantes, R. R., Araujo, S. A., & Pena, S. D. J. (2018). Nephrotic syndrome and adrenal insufficiency caused by a variant in SGPL1. Clinical Kidney Journal, 11, 462–467.

  44. Zamora-Pineda, J., Kumar, A., Suh, J., Zhang, M., & Saba, J. (2016). Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. Journal of Experimental Medicine, 213, 2773–2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schumann, J., Grevot, A., Ledieu, D., Wolf, A., Schubart, A., Piaia, A., Sutter, E., Cote, S., Beerli, C., Pognan, F., Billich, A., Moulin, P., & Walker, U. J. (2015). Reduced activity of sphingosine-1-phosphate lyase induces podocyte-related glomerular proteinuria, skin irritation, and platelet activation. Toxicologic Pathology, 43, 694–703.

    Article  CAS  PubMed  Google Scholar 

  46. Fogo, A. B. (2015). Causes and pathogenesis of focal segmental glomerulosclerosis. Nature Reviews Nephrology, 11, 76–87.

    Article  CAS  PubMed  Google Scholar 

  47. Schlondorff, D., & Banas, B. (2009). The mesangial cell revisited: no cell is an island. Journal of the American Society of Nephrology, 20, 1179–1187.

    Article  CAS  PubMed  Google Scholar 

  48. Mitroi, D. N., Deutschmann, A. U., Raucamp, M., Karunakaran, I., Glebov, K., Hans, M., Walter, J., Saba, J., Graler, M., Ehninger, D., Sopova, E., Shupliakov, O., Swandulla, D., & van Echten-Deckert, G. (2016). Sphingosine 1-phosphate lyase ablation disrupts presynaptic architecture and function via an ubiquitin–proteasome mediated mechanism. Scientific Reports, 6, 37064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hagen, N., Hans, M., Hartmann, D., Swandulla, D., & van Echten-Deckert, G. (2011). Sphingosine-1-phosphate links glycosphingolipid metabolism to neurodegeneration via a calpain-mediated mechanism. Cell Death and Differentiation, 18, 1356–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hagen, N., Van Veldhoven, P. P., Proia, R. L., Park, H., Merrill, Jr, A. H., & Van Echten-Deckert, G. (2009). Subcellular origin of sphingosine-1-phosphate is essential for its toxic effect in lyase deficient neurons. Journal of Biological Chemistry, 284, 11346–11353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao, P., Tassew, G. B., Lee, J. Y., Oskouian, B., Munoz, D. P., Hodgin, J. B., Watson, G. L., Tang, F., Wang, J. Y., Luo, J., Yang, Y., King, S. M., Krauss, R. M., Keller, N., & Saba, J. D. (2021). Efficacy of AAV9-mediated SGPL1 gene transfer in a mouse model of S1P lyase insufficiency syndrome. JCI Insight, 6, e145936.

  52. Borowsky, A. D., Bandhuvula, P., Kumar, A., Yoshinaga, Y., Nefedov, M., Fong, L. G., Zhang, M., Baridon, B., Dillard, L., de Jong, P., Young, S. G., West, D. B., & Saba, J. D. (2012). Sphingosine-1-phosphate lyase expression in embryonic and adult murine tissues. Journal of Lipid Research, 53, 1920–1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vogel, P., Donoviel, M. S., Read, R., Hansen, G. M., Hazlewood, J., Anderson, S. J., Sun, W., Swaffield, J., & Oravecz, T. (2009). Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PLoS ONE, 4, e4112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Behne, M., Uchida, Y., Seki, T., de Montellano, P. O., Elias, P. M., & Holleran, W. M. (2000). Omega-hydroxyceramides are required for corneocyte lipid envelope (CLE) formation and normal epidermal permeability barrier function. Journal of Investigative Dermatology, 114, 185–192.

    Article  CAS  PubMed  Google Scholar 

  55. Maharaj, A., Williams, J., Bradshaw, T., Guran, T., Braslavsky, D., Casas, J., Chan, L. F., Metherell, L. A., & Prasad, R. (2020). Sphingosine-1-phosphate lyase (SGPL1) deficiency is associated with mitochondrial dysfunction. The Journal of Steroid Biochemistry and Molecular Biology, 202, 105730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reiss, U., Oskouian, B., Zhou, J., Gupta, V., Sooriyakumaran, P., Kelly, S., Wang, E., Merrill, Jr, A. H., & Saba, J. D. (2004). Sphingosine-phosphate lyase enhances stress-induced ceramide generation and apoptosis. Journal of Biological Chemistry, 279, 1281–1290.

    Article  CAS  PubMed  Google Scholar 

  57. Morikawa, S., Tajima, T., Nakamura, A., Ishizu, K., & Ariga, T. (2017). A novel heterozygous mutation of the WFS1 gene leading to constitutive endoplasmic reticulum stress is the cause of Wolfram syndrome. Pediatric Diabetes, 18, 934–941.

    Article  CAS  PubMed  Google Scholar 

  58. Straub, I. R., Weraarpachai, W., & Shoubridge, E. A. (2021). Multi-OMICS study of a CHCHD10 variant causing ALS demonstrates metabolic rewiring and activation of endoplasmic reticulum and mitochondrial unfolded protein responses. Human Molecular Genetics, 30, 687–705.

  59. Phillips, R. S. (2015). Chemistry and diversity of pyridoxal-5’-phosphate dependent enzymes. Biochimica et Biophysica Acta, 1854, 1167–1174.

    Article  CAS  PubMed  Google Scholar 

  60. Cellini, B., Montioli, R., Oppici, E., Astegno, A., & Voltattorni, C. B. (2014). The chaperone role of the pyridoxal 5’-phosphate and its implications for rare diseases involving B6-dependent enzymes. Clinical Biochemistry, 47, 158–165.

    Article  CAS  PubMed  Google Scholar 

  61. Clayton, P. T. (2006). B6-responsive disorders: a model of vitamin dependency. Journal of Inherited Metabolic Disease, 29, 317–326.

    Article  CAS  PubMed  Google Scholar 

  62. Gregersen, N., Bross, P., Andrese, B. S., Pedersen, C. B., Corydon, T. J., & Bolund, L. (2001). The role of chaperone-assisted folding and quality control in inborn errors of metabolism: protein folding disorders. Journal of Inherited Metabolic Disease, 24, 189–212.

    Article  CAS  PubMed  Google Scholar 

  63. Bross, P., Corydon, T. J., Andresen, B. S., Jorgensen, M. M., Bolund, L., & Gregersen, N. (1999). Protein misfolding and degradation in genetic diseases. Human Mutation, 14, 186–198.

    Article  CAS  PubMed  Google Scholar 

  64. Lorenz, E. C., Lieske, J. C., Seide, B. M., Meek, A. M., Olson, J. B., Bergstralh, E. J., & Milliner, D. S. (2014). Sustained pyridoxine response in primary hyperoxaluria type 1 recipients of kidney alone transplant. American Journal of Transplantation, 14, 1433–1438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wilson, M. P., Plecko, B., Mills, P. B., & Clayton, P. T. (2019). Disorders affecting vitamin B6 metabolism. Journal of Inherited Metabolic Disease, 42, 629–646.

    Article  CAS  PubMed  Google Scholar 

  66. Falsaperla, R., & Corsello, G. (2017). Pyridoxine dependent epilepsies: new therapeutical point of view. Italian Journal of Pediatrics, 43, 68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bourquin, F., Capitani, G., & Grutter, M. G. (2011). PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism. Protein Science, 20, 1492–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Desnick, R. J., & Schuchman, E. H. (2002). Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nature Reviews Genetics, 3, 954–966.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S., & Yang, S. H. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. Molecular Therapy-Nucleic Acids, 4, e264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hoy, S. M. (2019). Onasemnogene Abeparvovec: first global approval. Drugs, 79, 1255–1262.

    Article  CAS  PubMed  Google Scholar 

  71. Athanasopoulos, T., Munye, M. M., & Yanez-Munoz, R. J. (2017). Nonintegrating gene therapy vectors. Hematology/Oncology Clinics of North America, 31, 753–770.

    Article  PubMed  Google Scholar 

  72. Schmahl, J., Raymond, C. S., & Soriano, P. (2007). PDGF signaling specificity is mediated through multiple immediate early genes. Nature Genetics, 39, 52–60.

    Article  CAS  PubMed  Google Scholar 

  73. Bektas, M., Allende, M. L., Lee, B. G., Chen, W., Amar, M. J., Remaley, A. T., Saba, J. D., & Proia, R. L. (2010). Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. Journal of Biological Chemistry, 285, 10880–10889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Allende, M., Bektas, M., Lee, B., Bonifacino, E., Kang, J., Tuymetova, G., Chen, W., Saba, J., & Proia, R. (2011). Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. Journal of Biological Chemistry, 286, 7348–7358.

    Article  CAS  PubMed  Google Scholar 

  75. Saraiva, J., Nobre, R. J., & Pereira de Almeida, L. (2016). Gene therapy for the CNS using AAVs: the impact of systemic delivery by AAV9. Journal of Controlled Release, 241, 94–109.

    Article  CAS  PubMed  Google Scholar 

  76. Studstill, C. J., Pritzl, C. J., Seo, Y. J., Kim, D. Y., Xia, C., Wolf, J. J., Nistala, R., Vijayan, M., Cho, Y. B., Kang, K. W., Lee, S. M., & Hahm, B. (2020). Sphingosine kinase 2 restricts T cell immunopathology but permits viral persistence. Journal of Clinical Investigation, 130, 6523–6538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Meacci, E., & Garcia-Gil, M. (2019). S1P/S1P receptor signaling in neuromuscolar disorders. International Journal of Molecular Sciences 20, 6364.

  78. Pezzuti, I. L., Silva, I. N., Albuquerque, C. T., Duarte, M. G., & Silva, J. M. (2014). Adrenal insufficiency in association with congenital nephrotic syndrome: a case report. Journal of Pediatric Endocrinology and Metabolism, 27, 565–567.

    Article  PubMed  Google Scholar 

  79. Du, X., Yang, Y., Zhan, X., Huang, Y., Fu, Y., Zhang, Z., Liu, H., Zhang, L., Li, Y., Wen, Q., Zhou, X., Zuo, D., Zhou, C., Li, L., Hu, S., & Ma, L. (2020). Vitamin B6 prevents excessive inflammation by reducing accumulation of sphingosine-1-phosphate in a sphingosine-1-phosphate lyase-dependent manner. Journal of Cellular and Molecular Medicine, 24, 13129–13138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huwiler, A., Bourquin, F., Kotelevets, N., Pastukhov, O., Capitani, G., Grutter, M. G., & Zangemeister-Wittke, U. (2011). A prokaryotic S1P lyase degrades extracellular S1P in vitro and in vivo: implication for treating hyperproliferative disorders. PLoS ONE, 6, e22436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chew, W. S., Wang, W., & Herr, D. R. (2016). To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling. Pharmacological Research, 113, 521–532.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a gift from the Swim Across America Foundation, a gift from Ultragenyx Pharmaceutical Inc. and a UCSF Catalyst Award (to J.D.S.). We dedicate this article to Dr. Viswanathan Natarajan, whose contributions and inspiration to others have been seminal to advancing the field of sphingolipid-mediated biology.

Author Contributions

J.D.S. wrote the manuscript; N.K. performed genotype/phenotype interaction analysis, prepared data presentations, and assisted in writing the manuscript; Y.S., A.S., F.T., and J.Y.W. prepared data presentations and assisted in writing the manuscript. All authors reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie D. Saba.

Ethics declarations

Conflict of Interest

J.D.S. is an inventor on a pending patent application “International Application Serial No. PCT/US2021/018613 Entitled: Adeno-Associated Viral (Aav)-Mediated Sgpl1 Gene Therapy for Treatment of Sphingosine-1-Phosphate Lyase Insufficiency Syndrome (Splis)”.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saba, J.D., Keller, N., Wang, JY. et al. Genotype/Phenotype Interactions and First Steps Toward Targeted Therapy for Sphingosine Phosphate Lyase Insufficiency Syndrome. Cell Biochem Biophys 79, 547–559 (2021). https://doi.org/10.1007/s12013-021-01013-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01013-9

Keywords

Navigation