Skip to main content
Log in

Linearly Polarized Light Transmission from a Pair of Cycloidal Diffractive Waveplates

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Coupled cycloidal diffractive waveplates (CDWP) can be used for double diffraction or collinearly propagation of laser radiation of the corresponding wavelength. Adding a doubly refracting and dichroic film between them enables one to obtain the finite transmission even in the absence of double refraction. Both in the cases of two parallel and antiparallel vector gratings, we have an achromatic transmission in the case of strong absorption (as well as in the case of the absence of anisotropic refraction).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kitsinelis. S., Light sources: technologies and applications. Boca Raton: Taylor & Francis, 2011.

  2. O’Neill, M. and Kelly, S.M., Adv. Mater. Deerfield Beach Fla, 2011, vol. 23, no. 5, p. 566.

    Article  Google Scholar 

  3. Smeeton, T. and Humphreys, C., Perspectives on electronic and optoelectronic materials. Springer handbook of electronic and photonic materials. S.O. Kasap, P. Capper, eds. New York: Springer, 2006.

    Google Scholar 

  4. Ossicini, S., Pavesi, L., and Priolo, F., Light emitting silicon for microphotonics. Berlin: Springer, 2003.

    Book  Google Scholar 

  5. A. Al-Azzawi. Photonics: principles and practices. Boca Raton: CRC Press, 2007.

    Google Scholar 

  6. Saleh, B.E.A. and Teich, M.C., Fundamentals of photonics, Hoboken: John Wiley & Sons, Inc., 2007.

    Google Scholar 

  7. Urbas, A., Klosterman, J., Tondiglia, V., Natarajan, L., Sutherland, R., Tsutsumi, O., Ikeda, T. and Bunning, T., Adv. Mater. Deerfield Beach Fla., 2004, vol. 16, no. 16, p. 1453.

    Article  Google Scholar 

  8. Klosterman, J., Natarajan, L.V., Tondiglia, V.P., Sutherland, R.L., White, T.J., Guymon, C.A., and Bunning, T.J., Polymer, 2004, vol. 45, p. 7213.

    Article  Google Scholar 

  9. Urbas, A., Tondiglia, V., Natarajan, L., Sutherland, R., Yu, H., Li, J.H., and Bunning, T., J. Am. Chem. Soc., 2004, vol. 126, no. 42, p. 13580.

    Article  Google Scholar 

  10. Booth, M.J., Phil. Trans. R. Soc. A., 2007, vol. 365, p. 2829.

    Article  ADS  Google Scholar 

  11. Squier, J. and Muller, M., Rev. Sci. Instrum., 2001, vol. 72, p. 2855.

    Article  ADS  Google Scholar 

  12. Wu, M.C., Solgaard, O., and Ford, J.E., J. Lightwave Technol., 2006, vol. 24, p. 4433.

    Article  ADS  Google Scholar 

  13. Yang, D.K. and Wu, S.T., Fundamentals of liquid crystal devices. England, West Sussex: John Wiley, 2006.

    Book  Google Scholar 

  14. Hainich, R.R. and Bimber, O., Displays: fundamentals & applications. Boca Raton: Taylor & Francis Group, 2011.

    Google Scholar 

  15. Wu, S.T. and Yang, D.K., Reflective liquid crystal displays. England, West Sussex: Wiley, 2001.

    Google Scholar 

  16. White, T.J., McConney, M.E., and Bunning, T.J., J. Mater. Chem., 2010, vol. 20, p. 9832.

    Article  Google Scholar 

  17. Brennan, D., Justice, J., Corbett, B., McCarthy, T., and Galvin, P., Anal. Bioanal. Chem., 2009, vol. 395, no. 3, p. 621.

    Article  Google Scholar 

  18. Sinclair, G., Jordan, P., Leach, J., Padgett, M.J., and Cooper, J., J. Mod. Opt., 2004, vol. 51, no. 3, p. 409.

    Article  ADS  Google Scholar 

  19. Hakobyan, M.R. and Hakobyan, R.S., J. Contemp. Phys., 2017, vol. 52, p. 295.

    Article  Google Scholar 

  20. Jamroz, W.R., Kruzelecky, R.V., and Haddad, E.I., Applied microphotonics. Boca Raton: CRC Taylor & Francis, 2006.

    Book  Google Scholar 

  21. Welford, W.T., Aberrations of optical systems. New York: Taylor and Francis, 1986.

    Google Scholar 

  22. Cai, W. and Shalaev, V., Optical metamaterials. New York: Springer, 2010.

    Book  Google Scholar 

  23. Lavrentovich, O.D., Proc. Nat. Acad. Sci. USA, 2011, vol. 108, p. 5143.

    Article  ADS  Google Scholar 

  24. Fernandez-Corbaton, I., Rockstuhl, C., Ziemke, P., Gumbsch, P., Albiez, A., Schwaiger, R., Frenzel, T., Kadic, M., and Wegener, M., New Twists of 3D Chiral Metamaterials, 2019, vol. 31, p. 1807742.

  25. Ren, Z., Chang, Y., Ma, Y., Shih, K., Dong, B., and Lee, C., Adv. Optical Mater., 2019, vol. 8, no. 3, p. 1900653.

    Article  Google Scholar 

  26. Yu, Y. and Ikeda, T., J. Photochem. Photobiol. Chem., 2004, vol. 5, no. 3, p. 247.

    Article  Google Scholar 

  27. Nersisyan, S.R., Tabiryan, N.V., Steeves, D.M., and Kimball, B.R., Opt. Photon. News, 2010, vol. 21. no. 3, p. 40.

    Article  ADS  Google Scholar 

  28. Hayrapetyan, A.A., Aramyan, R.A., Hakobyan, M.R., and Hakobyan, R.S., J. Contemp. Phys., 2019, vol. 54, p. 262.

    Article  Google Scholar 

  29. Tabiryan, N.V., Nersisyan, S.R., White, T.J., Bunning, T.J., Steeves, D.M., and Kimball, B.R., AIP Advances, 2011, vol. 1, p. 022153.

    Article  ADS  Google Scholar 

  30. Lin, T.-H. and Fuh, A.Y.-G., Appl. Phys. Lett., 2005. vol. 87, p. 011 106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Muradyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V. Musakhanyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muradyan, V., Akopyan, M.R. & Akopyan, R.S. Linearly Polarized Light Transmission from a Pair of Cycloidal Diffractive Waveplates. J. Contemp. Phys. 56, 98–102 (2021). https://doi.org/10.3103/S1068337221020110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337221020110

Keywords:

Navigation