Skip to main content
Log in

Self-Similarity, Fractality and Entropy Principle in Collisions of Hadrons and Nuclei at Tevatron, RHIC and LHC

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

\(z\)-Scaling of inclusive spectra as a manifestation of self-similarity and fractality of hadron interactions is illustrated. The scaling for negative particle production in \({\text{Au}} + {\text{Au}}\) collisions from BES-I program at RHIC is demonstrated. The scaling variable \(z\) depends on the momentum fractions of the colliding objects carried by the interacting constituents, and on the momentum fractions of the fragmenting objects in the scattered and recoil directions carried by the inclusive particle and its counterpart, respectively. Structures of the colliding objects and fragmentation processes in final state are expressed by fractal dimensions. Medium produced in the collisions is described by a specific heat. The scaling function \(\psi (z)\) reveals energy, angular, multiplicity, and flavor independence. It has a power behavior at high \(z\) (high \({{p}_{T}}\)). Based on the entropy principle and \(z\)-scaling, energy loss as a function of the collision energy, centrality and transverse momentum of inclusive particle is estimated. New conservation law including fractal dimensions is found. Quantization of fractal dimensions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. Eichten, K. Lane and M. Peskin, Phys. Rev. Lett. 50, 811 (1983).

    Article  ADS  Google Scholar 

  2. E. Eichten, I. Hinchliffe, K. Lane and C. Quigg, Rev. Mod. Phys. 56, 4 (1984).

    Article  Google Scholar 

  3. I. Antoniadis, Phys. Lett. B 246, 377 (1990).

    Article  ADS  Google Scholar 

  4. N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B 429, 263 (1998).

    Article  ADS  Google Scholar 

  5. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B 436, 257 (1998).

    Article  ADS  Google Scholar 

  6. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  7. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Dimopoulos and G. L. Landsberg, Phys. Rev. Lett. 87, 161602 (2001).

    Article  ADS  Google Scholar 

  9. S. B. Giddings and S. D. Thomas, Phys. Rev. D 65, 056010 (2002).

    Article  ADS  Google Scholar 

  10. A. Barrau, J. Grain, and S. Alexeyev, Phys. Lett. B 584, 114 (2004).

    Article  ADS  Google Scholar 

  11. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    MATH  Google Scholar 

  12. L. Nottale, Fractal Space-Time and Microphysics (World Scientific, Singapore, 1993).

    Book  MATH  Google Scholar 

  13. J. Feder, Fractals (Plenum, New York, 1988).

    Book  MATH  Google Scholar 

  14. L. M. Lederman and C. T. Hill, Symmetry and the Beautiful Universe (Prometheus Books, Amherst, NY, 2004)

    MATH  Google Scholar 

  15. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, Oxford, 1971).

    Google Scholar 

  16. H. E. Stanley, Rev. Mod. Phys. 71, S358 (1999).

    Article  Google Scholar 

  17. C. Domb, The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena (Taylor and Francis, London, 1996).

    Book  Google Scholar 

  18. I. Zborovský and M. V. Tokarev, Phys. Rev. D 75, 094008 (2007).

    Article  ADS  Google Scholar 

  19. I. Zborovský and M. V. Tokarev, Int. J. Mod. Phys. A 24, 1417 (2009).

    Article  ADS  Google Scholar 

  20. M. V. Tokarev and I. Zborovský, Int. J. Mod. Phys. A 32, 1750029 (2017).

    Article  ADS  Google Scholar 

  21. M. Tokarev, A. Kechechyan, and I. Zborovský, Nucl. Phys. A 993, 121646 (2020).

    Article  Google Scholar 

  22. M. V. Tokarev, I. Zborovský, A. O. Kechechyan, and T. G. Dedovich, Phys. Part. Nucl. 51, 141 (2020).

    Article  Google Scholar 

  23. M. G. Albrow et al. (CHLM Collab.), Nucl. Phys. B 56, 333 (1973).

    Article  ADS  Google Scholar 

  24. B. Alper et al. (BS Collab.), Nucl. Phys. B 100, 237 (1975).

    Article  ADS  Google Scholar 

  25. F. W. Büsser et al. (CCRS Collab.), Nucl. Phys. B 106, 1 (1976).

    Article  ADS  Google Scholar 

  26. K. Guettler et al. (BSM Collab.), Phys. Lett. B 64, 111 (1976).

    Article  ADS  Google Scholar 

  27. K. Guettler et al. (BSM Collab.), Nucl. Phys. B 116, 77 (1976).

    Article  ADS  Google Scholar 

  28. D. Antreasyan et al., Phys. Rev. D 19, 764 (1979).

    Article  ADS  Google Scholar 

  29. D. Drijard et al. (CDHW Collab.), Nucl. Phys. B 208, 1 (1982).

    Article  ADS  Google Scholar 

  30. D. E. Jaffe et al., Phys. Rev. D 40, 2777 (1989).

    Article  ADS  Google Scholar 

  31. J. Adams et al. (STAR Collab.), Phys. Lett. B 616, 8 (2005).

    Article  ADS  Google Scholar 

  32. J. Adams et al. (STAR Collab.), Phys. Lett. B 637, 161 (2006).

    Article  ADS  Google Scholar 

  33. B. I. Abelev et al. (STAR Collab.), Phys. Rev. C 75, 064901 (2007).

    Article  ADS  Google Scholar 

  34. J. Adams et al. (STAR Collab.), Phys. Rev. C 71, 064902 (2005).

    Article  ADS  Google Scholar 

  35. B. I. Abelev et al. (STAR Collab.), Phys. Rev. Lett. 97, 132301 (2006).

    Article  ADS  Google Scholar 

  36. R. Witt (for STAR Collab.), J. Phys. G: Nucl. Part. Phys. 31, S863 (2005).

    Article  Google Scholar 

  37. A. Adare et al. (PHENIX Collab.), Phys. Rev. D 83, 052004 (2011).

    Article  ADS  Google Scholar 

  38. G. Agakishiev et al. (STAR Collab.), Phys. Rev. Lett. 108, 072302 (2012).

    Article  ADS  Google Scholar 

  39. A. Adare et al. (PHENIX Collab.), Phys. Rev. C 90, 054905 (2014).

    Article  ADS  Google Scholar 

  40. J. Adams et al. (STAR Collab.), Phys. Rev. Lett. 92, 112301 (2004).

    Article  ADS  Google Scholar 

  41. F. W. Busser et al. (CCRS Collab.), Phys. Lett. B 61, 309 (1976).

    ADS  Google Scholar 

  42. H. Kichimi et al., Phys. Rev. D 20, 37 (1979).

    Article  ADS  Google Scholar 

  43. D. Drijard et al. (CDHW Collab.), Z. Phys. C 12, 217 (1982).

    Article  ADS  Google Scholar 

  44. T. Akesson et al. (AFS Collab.), Nucl. Phys. B 203, 27 (1982), Nucl. Phys. B 229, 541(E) (1983).

  45. J. Adams et al. (STAR Collab.), Phys. Lett. B 612, 181 (2005).

    Article  ADS  Google Scholar 

  46. A. Aduszkiewicz et al. (NA61/SHINE Collab.), Eur. Phys. J. C 76, 198 (2016).

    Article  ADS  Google Scholar 

  47. S. V. Afanasiev et al. (NA49 Collab.), Phys. Lett. B 491, 59 (2000).

    Article  ADS  Google Scholar 

  48. T. Anticic et al. (NA49 Collab.), Phys. Rev. C 84, 064909 (2011).

    Article  ADS  Google Scholar 

  49. F. Abe et al. (CDF Collab.), Phys. Rev. Lett. 74, 2626 (1995).

    Article  ADS  Google Scholar 

  50. S. Abachi et al. (DØ Collab.), Phys. Rev. Lett. 74, 2632 (1995).

    Article  ADS  Google Scholar 

  51. V. M. Abazov et al. (DØ Collab.), Phys. Lett. B 693, 515 (2010).

    Article  ADS  Google Scholar 

  52. S. Chatrchyan et al. (CMS Collab.), Eur. Phys. J. C 73, 2339 (2013).

    Article  ADS  Google Scholar 

  53. V. Khachatryan et al. (CMS Collab.), Eur. Phys. J. C 75, 542 (2015).

    Article  ADS  Google Scholar 

  54. V. Khachatryan et al. (CMS Collab.), Phys. Rev. D 94, 072002 (2016).

    Article  ADS  Google Scholar 

  55. CMS Collab., CMS PAS TOP-16-011.

  56. G. Aad et al. (ATLAS Collab.), Phys. Rev. D 90, 072004 (2014).

    Article  ADS  Google Scholar 

  57. G. Aad et al. (ATLAS Collab.), J. High Energy Phys., No. 06, 100 (2015).

  58. G. Aad et al. (ATLAS Collab.), Phys. Rev. D 93, 032009 (2016).

    Article  ADS  Google Scholar 

  59. G. Aad et al. (ATLAS Collab.), Eur. Phys. J. C 76, 538 (2016).

    Article  ADS  Google Scholar 

  60. V. M. Abazov et al. (DØ Collab.), Phys. Rev. D 90, 092006 (2014).

    Article  ADS  Google Scholar 

  61. G. Aad et al. (ATLAS Collab.), Eur. Phys. J. C 73, 2509 (2013).

    Article  ADS  Google Scholar 

  62. G. Aad et al. (ATLAS Collab.), Phys. Rev. D 86, 014022 (2012).

    Article  ADS  Google Scholar 

  63. M. Aaboud et al. (ATLAS Collab.), J. High Energy Phys., No. 09, 020 (2017).

  64. CMS Collab., PAS-SMP-12-012.

  65. S. Chatrchyan et al. (CMS Collab.), Phys. Rev. D 87, 112002 (2013).

    Article  ADS  Google Scholar 

  66. B. Abelev et al. (ALICE Collab.), Phys. Lett. B 722, 262 (2013).

    Article  ADS  Google Scholar 

  67. B. Abbott et al. (DØ Collab.), Phys. Rev. D 64, 032003 (2001).

    Article  ADS  Google Scholar 

  68. V. D. Elvira, “Measurement of the inclusive jet cross sections at TeV with the DØ Detector,” PhD Thesis (Univ., Buenos Aires, Argentina, 1995).

  69. V. M. Abazov et al. (DØ Collab.), Phys. Lett. B 525, 211 (2002).

    Article  ADS  Google Scholar 

  70. V. M. Abazov et al. (DØ Collab.), Phys. Rev. Lett. 101, 062001 (2008).

    Article  ADS  Google Scholar 

  71. M. Begel (for the DØ Collab.), hep-ex/0305072.

  72. V. M. Abazov et al. (DØ Collab.), Phys. Rev. D 85, 052006 (2012).

    Article  ADS  Google Scholar 

  73. F. Abe et al. (CDF Collab.), Phys. Rev. Lett. 77, 438 (1996).

    Article  ADS  Google Scholar 

  74. T. Affolder et al. (CDF Collab.), Phys. Rev. D 64, 032001 (2001), Phys. Rev. D 65, 039903(E) (2002).

  75. A. Abulencia et al. (CDF Collab.), Phys. Rev. Lett. 96, 122001 (2006).

    Article  ADS  Google Scholar 

  76. A. Abulencia et al. (CDF Collab.), Phys. Rev. D 74, 071103(R) (2006).

  77. A. Abulencia et al. (CDF Collab.), Phys. Rev. D 75, 092006 (2007).

    Article  ADS  Google Scholar 

  78. T. Aaltonen et al. (CDF Collab.), “Fermilab Tevatron collider using a cone-based jet algorithm,” Phys. Rev. D 78, 052006 (2008), Phys. Rev. D 79, 119902(E) (2009).

  79. M. V. Tokarev, I. Zborovský, and T. G. Dedovich, Int. J. Mod. Phys. A 27, 1250115 (2012).

    Article  ADS  Google Scholar 

  80. M. M. Aggarwal et al. (STAR Collab.), “An experimental exploration of the QCD phase diagram: The search for the critical point and the onset of deconfinement,” arXiv: 1007.2613.

  81. B. I. Abelev et al. (STAR Collab.), Phys. Rev. C 96, 044904 (2017).

    ADS  Google Scholar 

  82. M. Tokarev (for the STAR Collab.), Int. J. Mod. Phys. Conf. Ser. 39, 1560103 (2015).

    Article  Google Scholar 

  83. I. Zborovský, Int. J. Mod. Phys. A 33, 1850057 (2018).

    Article  ADS  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The investigation of (I.Z.) was supported by the RVO61389005 institutional support and by the MEYS of the Czech Republic under the contracts LTT18021 and LTT17018.

Presented at 40th International Conference on High Energy Physics, 28 July–6 August, 2020, Prague, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Zborovský or M. Tokarev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zborovský, I., Tokarev, M. Self-Similarity, Fractality and Entropy Principle in Collisions of Hadrons and Nuclei at Tevatron, RHIC and LHC. Phys. Part. Nuclei Lett. 18, 302–314 (2021). https://doi.org/10.1134/S1547477121030110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121030110

Navigation