Skip to main content
Log in

FLAP Collaboration: Tasks and Perspectives. Study of Fundamentals and New Applications of Controllable Generation of Electromagnetic Radiation by Relativistic Electrons Using Functional Materials

  • PHYSICS OF SOLID STATE AND CONDENSED MATTER
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We present the scope of research of a new collaboration FLAP (Fundamental & applied Linear Accelerator Physics collaboration) devoted to the study of the basics of electromagnetic interactions and new applications of controllable generation of electromagnetic radiation by relativistic electrons using functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. M. Shevelev, A. Aryshev, N. Terunuma, and J. Urakawa, “Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer,” Phys. Rev. Accel. Beams 20, 103401 (2017).

    Article  ADS  Google Scholar 

  2. M. Fukuda et al., “Generation of multi-bunch beam with beam loading compensation by using RF amplitude modulation in Laser Undulator Compact X-ray (LUCX),” in Proceedings of the 6th International Particle Accelerator Conference IPAC'15, Richmond, VA, USA, May 2015, pp. 1576–1578. https://doi.org/10.18429/JACoW-IPAC2015-TUPWA065

  3. V. V. Soboleva et al., Nucl. Instrum. Methods Phys. Res., Sect. B 402, 182–184 (2017).

    Google Scholar 

  4. S. M. Young et al., Phys. Rev. Lett. 108, 140405 (2012).

    Article  ADS  Google Scholar 

  5. Qinsheng Wang et al., Nano Lett. 17, 834–841 (2017).

    Article  ADS  Google Scholar 

  6. T. Nebiki et al., J. Vacuum Sci. Technol. A 21, 1671 (2003).

    Article  ADS  Google Scholar 

  7. K. A. Vokhmyanina et al., Nucl. Instrum. Methods Phys. Res., Sect. B 355, 307–310 (2015).

    Google Scholar 

  8. R. M. Nazhmudinov, A. S. Kubankin, P. V. Karataev, et al., “A multi-wirescanner test setup utilizing characteristic X-rays for charged particle and photon beam diagnostics,” J. Instrum. 13, 12012 (2018).

    Article  Google Scholar 

  9. K. A. Vokhmyanina, A. Aryshev, A. S. Kubankin, I. A. Kishin, N. Terunuma, and J. Urakawa, “Pre-bunched relativistic electron beam focusing by dielectric capillary,” in Proceedings of the 13th International Symposium on Radiation from Relativistic Electrons in Periodic Structures, September 16–20, 2019.

  10. A. Kubankin, V. Likhachev, N. Nasonov, A. Rakitjansky, and P. Zhukova, “Cherenkov effect and parametric X-rays,” Nucl. Instrum. Methods Phys. Res., Sect. B 252, 124–130 (2006).

    Google Scholar 

  11. R. Kieffer, L. Bartnik, M. Bergamaschi, V. V. Bleko, M. Billing, L. Bobb, J. Conway, M.Forster, P. Karataev, A. S. Konkov, R. O. Jones, T. Lefevre, J. S. Markova, S. Mazzoni, Y. Padilla Fuentes, A. P. Potylitsyn, J. Shanks, and S. Wang, “Direct observation of incoherent Cherenkov diffraction radiation in the visible range,” Phys. Rev. Lett. 121, 054802 (2018).

    Article  ADS  Google Scholar 

  12. A. Curcio, M. Bergamaschi, R. Corsini, W. Farabolini, D. Gamba, L. Garol, R. Kieffer, T. Lefevre, S. Mazzoni, K. Fedorov, J. Gardelle, A. Gilardi, P. Karataev, K. Lekomtsev, T. Pacey, Y. Saveliev, A. Potylitsyn, and E. Senes, “Non-invasive bunch length measurements exploiting Cherenkov diffraction radiation,” Phys. Rev. Accel. Beams 23, 022802 (2020).

    Article  ADS  Google Scholar 

  13. G. Naumenko, A. Potylitsyn, M. Shevelev, P. Karataev, M. Shipulya, and V. Bleko, “Monochromatic coherent transition and diffraction radiation from a relativistic electron bunch train,” J. Instrum. 13, C04007 (2018).

    Article  Google Scholar 

  14. G. Naumenko, A. Potylitsyn, P. Karataev, M. Shipulya, and V. Bleko, “Spectrum of coherent transition radiation generated by modulated electron beam,” JETP Lett. 106, 127–130 (2017).

    Article  ADS  Google Scholar 

  15. A. Aryshev, S. Araki, M. Fukuda, N. Terunuma, J. Urakawa, P. Karataev, G. Naumenko, A. Potylitsyn, L. Sukhikh, D. Verigin, and K. Sakaue, “Observation of the stimulated coherent diffraction radiation in an open resonator at LUCX facility,” Nucl. Instrum. Methods Phys. Res., Sect. A 763, 424–432 (2014).

    Google Scholar 

  16. A. A. Krasnykh, I. A. Miloichikova, G. A. Naumenko, Yu. M. Cherepennikov, and S. G. Stuchebrov, “Reconstruction of the electron beam flux density distribution in the transverse plane based on the multi-angle wire scanning,” Nauch. Vedom. Belgor. Univ., Fiz. Mat. 50, 323–328 (2018).

    Google Scholar 

  17. A. A. Baldin, A. I. Berlev, A. N. Fedorov, and N. V. Kudashkin, “Detector based on microchannel plates for monitoring space-time parameters of circulating beams of Nuclotron,” Phys. Part. Nucl. Lett. 2, 121–126 (2014).

    Article  Google Scholar 

  18. A. A. Baldin, A. I. Berlev, S. E. Vasil’ev, A. V. Vishnevsky, et al., “Monitoring of extracted beams of Nuclotron accelerator complex for experiments 'energy + transmutation',” JINR Rapid Commun., No. 2 (JINR, Dubna, 2016).

    Google Scholar 

  19. A. A. Baldin, G. A. Feofilov, P. Har’yuzov, and F. F. Valiev, “Fast beam–beam collisions monitor for experiments at NICA,” Nucl. Instrum. Methods Phys. Res., Sect. A 958, 162154 (2019).

    Google Scholar 

  20. J. Adam, A. A. Baldin, M. Baznat, et al., “Secondary particle distributions in an extended uranium target under irradiation by proton, deuteron, and carbon beams”, Nucl. Instrum. Methods Phys. Res., Sect. A 872, 87–92 (2017).

    Google Scholar 

  21. Yu. B. Bazarov, M. A. Karpov, E. V. Khaldeev, et al., “Results of registration of light phenomena in a shock-loaded quartz single crystal,” in Proceedings of the 35th International Conference on Equations of State for Matter ELBRUS 2020, Cheget, Russian Federation, March 1–6, 2020.

  22. M. A. Karpov, N. A. Kleopova, and S. A. Zatolokin, “Registrator of frame X-ray images with direct transformation and an exposure from 5 ns in a range from 0.01 to 300 keV,” in Proceedings of the 5th International Conference on Laser, Plasma Studies and Technologies, February 12–15, 2019, Moscow.

  23. M. Battaglieri et al., in Summary of Workshop on U. S. Cosmic Visions: New Ideas in Dark Matter, 2017, arXiv: 1707.04591

  24. D. Banerjee et al. (NA64 Collab.), Phys. Rev. Lett. 118, 011802 (2017).

    Article  ADS  Google Scholar 

  25. G. B. Franklin et al. (APEX Coll.), EPJ Web of Conf. 142, 01015 (2017).

  26. A. J. Krasznahorkay et al., Phys. Rev. Lett. 116, 042501 (2016).

    Article  ADS  Google Scholar 

  27. D. Banerjee et al. (NA64 Collab.), Phys. Rev. D 101, 071101 (2020).

    Article  ADS  Google Scholar 

  28. P. Swiderek, Angew. Chem. Int. Ed. 45, 4056 (2006).

    Article  Google Scholar 

  29. M. B. Vrouenraets, G. W. Visser, G. B. Snow, and G. A. van Dongen, Anticancer Res. 23 (1B), 505 (2003).

    Google Scholar 

  30. B. C. Wilson, Can. J. Gastroenterol. 16, 393 (2002).

    Article  Google Scholar 

  31. A. E. O’Connor, W. M. Gallagher, and A. T. Byrne, Photochem. Photobiol. 85, 1053 (2009).

    Article  Google Scholar 

  32. V. M. Tsakanov, L. R. Aloyan, Y. B. Dalyan, et al., “AREAL low energy electron beam applications in life and materials sciences,” Nucl. Instrum. Methods Phys. Res., Sect. A 829, 248–253 (2016).

    Google Scholar 

  33. A. R. Mkrtchyan et al., Phys. Status Solidi A 92, 361 (1985);

    Article  ADS  Google Scholar 

  34. A. R. Mkrtchyan, H. A. Aslanyan, A. H. Mkrtchian, R. H. Gasparian, and G. M. Garibian, Phys. Lett. A 152, 297 (1991).

    Article  ADS  Google Scholar 

  35. A. R. Mkrtchyan, R. A. Gasparyan, and R. G. Gabrielyan, Phys. Lett. A 115, 410 (1986);

    Article  ADS  Google Scholar 

  36. Phys. Lett. A 126, 528 (1988);

  37. L. Sh. Grigoryan et al., Nucl. Instrum. Methods Phys. Res., Sect. B 173, 13 (2001);

    Google Scholar 

  38. Nucl. Instrum. Methods Phys. Res., Sect. B 173, 184 (2001);

  39. L. Sh. Grigoryan, A. H. Mkrtchyan, H. F. Khachatryan, V. U. Tonoyan, and W. Wagner, Nucl. Instrum. Methods Phys. Res., Sect. B 201, 25 (2003);

    Google Scholar 

  40. W. Wagner, B. Azadegan, L. Sh. Grigoryan, and J. Pawelke, Europhys. Lett. 78, 56004 (2007);

    Article  ADS  Google Scholar 

  41. B. Azadegan, L. Sh. Grigoryan, J. Pawelke, and W. Wagner, J. Phys. B 41, 235101 (2008).

    Article  ADS  Google Scholar 

  42. L. Sh. Grigoryan, A. H. Mkrtchyan, and A. A. Saharian, Nucl. Instrum. Methods Phys. Res., Sect. B 145, 197 (1998);

    Google Scholar 

  43. A. R. Mkrtchyan, V. V. Parazian, and A. A. Saharian, Mod. Phys. Lett. B 27, 2693 (2010);

    Article  ADS  Google Scholar 

  44. A. R. Mkrtchyan, V. V. Parazian, and A. A. Saharian, Int. J. Mod. Phys. B 26, 1250036 (2012);

    Article  ADS  Google Scholar 

  45. A. R. Mkrtchyan, V. V. Parazian, and A. A. Saharian, J. Instrum. 13, C01032 (2018).

    Article  Google Scholar 

  46. A. A. Saharian, A. R. Mkrtchyan, V. V. Parazian, and L. Sh. Grigoryan, Mod. Phys. Lett. A 19, 99 (2004);

    Article  ADS  Google Scholar 

  47. A. R. Mkrtchyan, A. A. Saharian, and V. V. Parazian, Mod. Phys. Lett. B 23, 2573 (2009).

    Article  ADS  Google Scholar 

  48. A. R. Mkrtchyan, A. A. Saharian, L. Sh. Grigoryan, and B. V. Khachatryan, Mod. Phys. Lett. A 17, 2571 (2002);

    Article  ADS  Google Scholar 

  49. A. R. Mkrtchyan, A. A. Saharian, and V. V. Parazian, Mod. Phys. Lett. B 20, 1617 (2006).

    Article  ADS  Google Scholar 

  50. A. R. Mkrtchyan, L. Sh. Grigoryan, A. A. Saharian, and A. N. Didenko, Acustica 75, 1984 (1991);

    Google Scholar 

  51. A. A. Saharian, A. R. Mkrtchyan, L. A. Gevorgian, L. Sh. Grigoryan, and B. V. Khachatryan, Nucl. Instrum. Methods Phys. Res. Sect. B 173, 211 (2001).

    Article  ADS  Google Scholar 

  52. A. R. Mkrtchyan, A. P. Potylitsyn, V. R. Kocharyan, and A. A. Saharian, Phys. Rev. E 93, 022117 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  53. L. Sh. Grigoryan, H. F. Khachatryan, and S. R. Arzumanyan, Nuovo Cim. C 34, 317 (2011);

    Google Scholar 

  54. L. Sh. Grigoryan, A. R. Mkrtchyan, H. F. Khachatryan, S. R. Arzumanyan, and W. Wagner, J. Phys.: Conf. Ser. 357, 012004 (2012);

    Google Scholar 

  55. A. R. Mkrtchyan et al., J. Instrum. 15, C06019 (2020).

    Article  Google Scholar 

  56. A. S. Kotanjyan, A. R. Mkrtchyan, A. A. Sahariana, and V. Kh. Kotanjyan, J. Instrum. 13, C01016 (2018);

    Article  Google Scholar 

  57. A. A. Saharian, A. S. Kotanjyany, L. Sh. Grigoryan, H. F. Khachatryan, and V. Kh. Kotanjyan, Int. J. Mod. Phys. B 34, 2050065 (2020);

    Article  ADS  Google Scholar 

  58. A. A. Saharian, L. Sh. Grigoryan, A. Kh. Grigorian, H. F. Khachatryan, and A. S. Kotanjyan, Phys. Rev. A 102, 063517 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Baldina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldin, A., Aryshev, A., Avetisyan, A. et al. FLAP Collaboration: Tasks and Perspectives. Study of Fundamentals and New Applications of Controllable Generation of Electromagnetic Radiation by Relativistic Electrons Using Functional Materials. Phys. Part. Nuclei Lett. 18, 338–353 (2021). https://doi.org/10.1134/S1547477121030043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121030043

Navigation