Skip to main content
Log in

Systems Analysis of the Evolution of Views on Oil Systems: From Petroleum Chemistry to Petroinformatics

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Essentially different approaches to studying oil systems (analytical, colloid-chemical, model, chemo-informational), regardless of the chronological periods of their development, are described. The analytical approach, being historically first, today, with the progress of petroleomics, becomes the source of digital data on the detailed chemical composition of oil systems, which is particularly important for the progress of the chemo-informational approach, petroinformatics. From the standpoint of systems analysis, specifically petroinformatics combines the achievements of all the other approaches, because the availability of the initial digital data on the detailed composition, obtained by petroleomics, on the parameters of the colloid-disperse structure, and on reference properties of a representative set of oil system samples gives grounds to expect that the use of chemometrics and mathematical methods of multivariate data analysis will allow reliable prediction of practically important reference properties of new oil system samples. An example of comparative processing of multivariate data for a limited sample of Russian crude oils using mathematical methods is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. Ryabov, V.D., Khimiya nefti i gaza (Oil and Gas Chemistry), Moscow: Forum, 2009.

REFERENCES

  1. Mullins, O.C., Sabbah, H., Eyssautier, J., Pomerantz, A.E., Barré, L., Andrews, A.B., and Lepkowicz, R., Energy Fuels, 2012, vol. 26, no. 7, pp. 3986–4003. https://doi.org/10.1021/ef300185p

    Article  CAS  Google Scholar 

  2. Speight, J.G., Oil Gas Sci. Technol., 2004, vol. 59, no. 5, pp. 467–477. https://doi.org/10.2516/ogst:2004032

    Article  CAS  Google Scholar 

  3. Spiecker, P.M., Gawrys, K.L., and Kilpatrick, P.K., J. Colloid Interface Sci., 2003, vol. 267, no. 1, pp. 178–193. https://doi.org/10.1016/S0021-9797(03)00641-6

    Article  CAS  PubMed  Google Scholar 

  4. Gray, M.R., Tykwinski, R.R., Stryker, J.M., and Tan, X., Energy Fuels, 2011, vol. 25, no. 7, pp. 3125–3134. https://doi.org/10.1021/ef200654p

    Article  CAS  Google Scholar 

  5. Akbarzadeh, K., Hammami, A., Kharrat, A., Zhang, D., Allenson, S., Creek, J., and Mullins, O.C., Oilfield Rev., 2007, vol. 19, no. 2, pp. 22–43. https://doi.org/10.3390/pr8111504

    Article  CAS  Google Scholar 

  6. Ganeeva, Yu.M., Yusupova, T.N., and Romanov, G.V., Russ. Chem. Rev., 2011, vol. 80, no. 10, p. 993. https://doi.org/10.1070/RC2011v080n10ABEH004174

    Article  CAS  Google Scholar 

  7. Evdokimov, I.N., Energy Fuels, 2019, vol. 33, no. 9, pp. 8440–8447. https://doi.org/10.1021/acs.energyfuels.9b01993

    Article  CAS  Google Scholar 

  8. Martyanov, O.N., Larichev, Y.V., Morozov, E.V., Trukhan, S.N., and Kazarian, S.G., Russ. Chem. Rev., 2017, vol. 86, no. 11, pp. 999–1023. https://doi.org/10.1070/RCR4742

    Article  CAS  Google Scholar 

  9. Rana, M.S., Samano, V., Ancheyta, J., and Diaz, J.A.I., Fuel, 2007, vol. 86, no. 9, pp. 1216–1231. https://doi.org/10.1016/j.fuel.2006.08.004

    Article  CAS  Google Scholar 

  10. Glagoleva, O.F. and Kapustin, V.M., Petrol. Chem., 2018, vol. 58, no. 1, pp. 3–10. https://doi.org/10.7868/S002824211801001

    Article  Google Scholar 

  11. Martínez-Palou, R., de Lourdes Mosqueira, M., Zapata-Rendón, B., Mar-Juárez, E., Bernal-Huicochea, C., de la Cruz Clavel-López, J., and Aburto, J., J. Petrol. Sci. Eng., 2011, vol. 75, nos. 3–4, pp. 274–282. https://doi.org/10.2523/IPTC-19999-MS

    Article  Google Scholar 

  12. Hasan, S.W., Ghannam, M.T., and Esmail, N., Fuel, 2010, vol. 89, no. 5, pp. 1095–1100. https://doi.org/10.1016/j.fuel.2009.12.021

    Article  CAS  Google Scholar 

  13. Khadzhiev, S.N., Petrol. Chem., 2011, vol. 51, no. 1, pp. 3–16. https://doi.org/10.1134/S0965544111010063

    Article  CAS  Google Scholar 

  14. Headen, T.F. and Hoepfner, M.P., Energy Fuels, 2019, vol. 33, no. 5, pp. 3787–3795. https://doi.org/10.1021/acs.energyfuels.8b03196

    Article  CAS  Google Scholar 

  15. Roldughin, V.I., Russ. Chem. Rev., 2003, vol. 72, no. 10, pp. 849–866. https://doi.org/10.1070/RC2003v072n10ABEH000805

    Article  CAS  Google Scholar 

  16. Simon, S., Ruwoldt, J., and Sjöblom, J., Adv. Colloid Interface Sci., 2020, vol. 277, pp. 102–210. https://doi.org/10.1016/j.cis.2020.102120

    Article  CAS  Google Scholar 

  17. Yen, T.F., Erdman, J.G., and Pollack, S.S., Anal. Chem., 1961, vol. 33, no. 11, pp. 1587–1594. https://doi.org/10.1021/ac60179a039

    Article  CAS  Google Scholar 

  18. Fedyaeva, O.N. and Vostrikov, A.A., Vestn. Ross. Fonda Fundam. Issled., 2017, vol. 1, pp. 114–127. https://doi.org/10.1021/ef990177i

    Article  CAS  Google Scholar 

  19. Zlobin, A.A., Vestn. Permsk. Nats. Issled. Politekh. Univ. Geol. Neftegaz. Gorn. Delo, 2018, vol. 17, no. 2, pp. 136–151. https://doi.org/10.15593/2224-9923/2015.17.5

    Article  Google Scholar 

  20. Novikov, E.A., Sergeev, Yu.A., Sanzharov, V.V., Safieva, R.Z., and Vinokurov, V.A., Petrol. Chem., 2019, vol. 59, no. 1, pp. 34–47. https://doi.org/10.1134/S002824211901012X

    Article  CAS  Google Scholar 

  21. Syunyaev, Z.I., Safieva, R.Z., and Syunyaev, R.Z., Neftyanye dispersnye sistemy (Oil Disperse Systems), Moscow: Khimiya, 1990.

  22. Dearing, T.I., Thompson, W.J., Rechsteiner, C.E., and Marquardt, B.J., Appl. Spectrosc., 2011, vol. 65, no. 2, pp. 181–186. https://doi.org/10.1366/10-05974

    Article  CAS  Google Scholar 

  23. Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, Bakeev, K.A., Ed., Hoboken, NJ, USA: Wiley, 2010. . https://doi.org/10.1002/9780470689592

  24. Chen, P. and Chu, X., J. Instrum. Anal., 2012, vol. 31, no. 9, pp. 1191–1198. https://doi.org/10.1109/MCS.2006.252833

    Article  CAS  Google Scholar 

  25. Halstensen, M., Arvoh, B.K., Amundsen, L., and Hoffmann, R., OFuel, 2013, vol. 105, pp. 718–727. https://doi.org/10.1016/j.fuel.2012.10.004

    Article  CAS  Google Scholar 

  26. Huang, Z., Zheng, S., and Fogler, H.S., Wax Deposition: Experimental Characterizations, Theoretical Modeling, and Field Practices, Boca Raton, Florida, USA: CRC, 2016. https://doi.org/10.1201/b18482

  27. Maru, W. and Sherman, R.E., 63rd Annual ISA-Analysis Division Symp., April 22–26, 2018, Galveston, TX, USA. https://doi.org/10.2118/141470-MS

  28. Kelland, M.A. et al., SPE Annual Technical Conf. and Exhibition, Soc. of Petroleum Engineers, 1994. https://doi.org/10.2118/28506-MS

  29. https://petrophase2017.sciencesconf.org/resource/page/id/10

  30. Kam’yanov, V.F. and Bol’shakov, G.F., Petrol. Chem., 1984, vol. 24, no. 1, pp. 450–459.

    Google Scholar 

  31. Sjoblom, J., Simon, S., and Xu, Z., Adv. Colloid Interface Sci., 2015, vol. 218, pp. 1–16. https://doi.org/10.1016/j.cis.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  32. Hur, M., Kim, S., and Hsu, C., Petroinformatics, Springer Handbook of Petroleum Technology, Cham: Springer, 2017, pp. 173–198.

  33. Hur, M., Ware, R.L., Park, J., McKenna, A.M., Rodgers, R.P., Nikolau, B.J., Wurtele, E.S., and Marshall, A.G., Energy Fuels, 2018, vol. 32, no. 2, pp. 1206–1212. https://doi.org/10.1021/acs.energyfuels.7b03061

    Article  CAS  Google Scholar 

  34. Clark, H.A. and Jurs, P.C., Anal. Chem., 1979, vol. 51, no. 6, pp. 616–620. https://doi.org/10.1021/ac50042a008

    Article  CAS  Google Scholar 

  35. Gutiérrez Sama, S., Farenc, M., Barrère-Mangote, C., Lobinski, R., Afonso, C., Bouyssière, B., and Giusti, P., Energy Fuels, 2018, vol. 32, no. 4 pp. 4593–4605. https://doi.org/10.1021/acs.energyfuels.7b03218

    Article  CAS  Google Scholar 

  36. Bendoraitis, J.G., Brown, B.L., and Hepner, L.S., Anal. Chem., 1952, vol. 24, no. 10, pp. 1551–1558. https://doi.org/10.1021/ac60070a008

    Article  Google Scholar 

  37. Putscher, R.E., Analyt. Chem., 1952, vol. 24, no. 10, pp. 1551–1558. https://doi.org/10.1021/ac60070a008

  38. Lutnaes, B., Brandal, Ø., Sjöblom, J., and Krane, J., Org. Вiomol. Сhem., 2006, vol. 4, no. 4, pp. 616–620. https://doi.org/10.1039/B516907K

    Article  CAS  Google Scholar 

  39. Hsu, C.S., Liang, Z, and Campana, J.E., Anal. Chem., 1994, vol. 66, pp. 850–855. https://doi.org/10.1021/ac00078a015

    Article  CAS  Google Scholar 

  40. Guan, S., Marshall, A.G., and Scheppele, S.E., Anal. Chem., 1996, vol. 68, no. 1, pp. 46–71. https://doi.org/10.1021/ac9507855

    Article  CAS  PubMed  Google Scholar 

  41. Marshall, A.G. and Rodgers, R.P., Acc. Chem. Res., 2004, vol. 37, no. 1, pp. 53–59. https://doi.org/10.1021/ar020177t

    Article  CAS  PubMed  Google Scholar 

  42. Hughey, C.A., Rodgers, R.P., and Marshall, A.G., Anal. Chem., 2002, vol. 74, no. 16, pp. 4145–4149. https://doi.org/10.1021/ac020146b

    Article  CAS  PubMed  Google Scholar 

  43. Hughey, C.A., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., and Qian, K., Anal. Chem., 2001, vol. 73, no. 19, pp. 4676–4681. https://doi.org/10.1021/ac010560w

    Article  CAS  PubMed  Google Scholar 

  44. Boduszynski, M.M., Energy Fuels, 1987, vol. 1, no. 1, pp. 2–11. https://doi.org/10.1021/ef00001a001

    Article  CAS  Google Scholar 

  45. Marshall, A.G. and Rodgers, R.P., Proc. Natl. Acad. Sci., 2008, vol. 105, no. 47, pp. 18090–18095. https://doi.org/10.1073/pnas.0805069105

    Article  PubMed  Google Scholar 

  46. Chacón-Patiño, M.L., Rowland, S.M., and Rodgers, R.P., Energy Fuels, 2017, vol. 31, no. 12, pp. 13509–13518. https://doi.org/10.1021/acs.energyfuels.7b02873

    Article  CAS  Google Scholar 

  47. Klein, G.C., Kim, S., Rodgers, R.P., Marshall, A.G., and Yen, A., Energy Fuels, 2006, vol. 20, no. 5, pp. 1973–1979. https://doi.org/10.1021/acs.energyfuels.7b02873

    Article  CAS  Google Scholar 

  48. Hsu, C.S., Hendrickson, C.L., Rodgers, R.P., McKenna, A.M., and Marshall, A.G., J. Mass Spectrom., 2011, vol. 46, no. 4, pp. 337–343. https://doi.org/10.1002/jms.1893

    Article  CAS  PubMed  Google Scholar 

  49. Panda, S.K., Andersson, J.T., and Schrader, W., Angew. Chem., 2009, vol. 121, no. 10, pp. 1820–1823. https://doi.org/10.1002/anie.200803403

    Article  CAS  Google Scholar 

  50. Suzuki, T., Katano, K., Tanaka, R., and Teratani, S., Patent US 16/340 883, 2019.

  51. Lozano, D.C.P., Thomas, M.J., Jones, H.E., and Barrow, M.P., Annu. Rev Anal. Chem., 2020, vol. 13, pp. 405–430. https://www.annualreviews.org/doi/abs/10.1146/annurev-anchem-091619-09182

    Article  Google Scholar 

  52. Yarranton, H.W., Ortiz, D.P., Barrera, D.M., Baydak, E.N., Barre, L., Eyssautier, J., Zeng, H., Xu, Z., Dechaine, G., Becerra, M., Shaw, J.M., McKenna, A.M., Mapolelo, M.M., Bohne, C., Yang, Z., and Oake, J., Energy Fuels, 2013, vol. 27, no. 9, pp. 5083–5106. https://doi.org/10.1021/ef400729w.s001

    Article  CAS  Google Scholar 

  53. Hotier, G. and Robin, M., Rev. IFP, 1983, vol. 38, pp. 101–119. https://doi.org/10.2516/ogst:1983007

    Article  CAS  Google Scholar 

  54. Andersen, S.I. and Speight, J.G., J. Petrol. Sci. Eng., 1999, vol. 22, nos. 1–3, pp. 53–66. https://doi.org/10.1016/S0920-4105(98)00057-6

    Article  CAS  Google Scholar 

  55. Qiao, P., Harbottle, D., Tchoukov, P., Masliyah, J., Sjoblom, J., Liu, Q., and Xu, Z., Energy Fuels, 2017, vol. 31, no. 4, pp. 3330–3337. https://doi.org/10.1021/acs.energyfuels.6b02401

    Article  CAS  Google Scholar 

  56. Evdokimov, I.N., Fuel, 2005, vol. 84, no. 1, pp. 13–28. https://doi.org/10.1016/j.fuel.2004.05.005

    Article  CAS  Google Scholar 

  57. Field Flow Fractionation Handbook, Schimpf, M.E., Caldwell, K., and Giddings, J.P., Eds., Wiley, 2000.

  58. Grin’ko, A.A. and Golovko, A.K., Petrol. Chem., 2011, vol. 51, no. 1, pp. 192–202. https://doi.org/10.1134/S096554411103006

    Article  Google Scholar 

  59. Galimova, G.A., Yusupova, T.N., Ibragimova, D.A., and Yakupov, I.R., Vestn. Kazansk. Tekhnol. Univ., 2015, vol. 18, no. 20, pp. 60–64.

    CAS  Google Scholar 

  60. Verma, M., Venkataraman, P., Pradhan, S., Shammai, H.M., Billups, W.E., and Wellington, S., Patent US 10287510, 2019.

  61. Stavitskaya, A.V., Konstantinova, M.L., and Safieva, R.Z., Petrol. Chem., 2016, vol. 56, no. 4, pp. 623–628. https://doi.org/10.1134/S0965544116020146

    Article  CAS  Google Scholar 

  62. Krajewski, L.C., Rodgers, R.P., and Marshall, A.G., Anal. Chem., 2017, vol. 89, no. 21, pp. 11318–11324. https://doi.org/10.1021/acs.analchem.7b02004

    Article  CAS  PubMed  Google Scholar 

  63. Palacio Lozano, D.C., Gavard, R., Arenas-Diaz, J.P., Thomas, M.J., Stranz, D.D., Mejía-Ospino, E., Guzman, A., Spencer, S.E., Rossell, D., and Barrow, M.P., Chem. Sci., 2019, vol. 10, no. 29, pp. 6966–6978. https://doi.org/10.1039/C9SC02903F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Santos, J.M., Wisniewski, A.Jr., Eberlin, M.N., and Schrader, W., Energies, 2018, vol. 11, no. 10, pp. 2766–2770. https://doi.org/10.3390/en11102766

    Article  CAS  Google Scholar 

  65. Farmani, Z. and Schrader, W.A., Energies, 2019, vol. 12, no. 18, pp. 3455–3456. https://doi.org/10.3390/en12183455

    Article  CAS  Google Scholar 

  66. Evdokimov, I.N., Fesan, A.A., and Losev, A.P., Monomers and molecular aggregates of asphaltenes: delusions and facts, Fundamental’nyi basis innovatsionnykh tekhnologii neftyanoi i gazovoi promyshlennosti (Fundamental Basis of Innovative Technologies of Oil and Gas Industry), 2017, pp. 58–59.

  67. Nguyen, T.T.H., Shogo, T., Ryuzo, T., Akira, E., and Masahiko, H., Energy Fuels, 2017, vol. 31, no. 5, pp. 5673–5681. https://doi.org/10.1021/acs.energyfuels.7b00360

    Article  CAS  Google Scholar 

  68. Katano, K., Takahashi, Y., Sato, K., Tsuji, K., Hayasaka, T., Nakamura, T., and Inamura, K., J. Jpn. Petrol. Inst., 2020, vol. 63, no. 3, pp. 133–140. https://doi.org/10.1627/jpi.63.133

    Article  CAS  Google Scholar 

  69. Aske, N., Kallevik, H., and Sjöblom, J., Energy Fuels, 2001, vol. 15, no. 5, pp. 1304–1312. https://doi.org/10.1021/ef010088h

    Article  CAS  Google Scholar 

  70. Hur, M., Yeo, I., Kim, E., No, M.H., Koh, J., Cho, Y.J., and Kim, S., Energy Fuels, 2010, vol. 24, no. 10, pp. 5524–5532. https://doi.org/10.1021/ef1007165

    Article  CAS  Google Scholar 

  71. Chiaberge, S., Fiorani, T., Savoini, A., Bionda, A., Ramello, S., Pastori, M., and Cesti, P., Fuel Process. Technol., 2013, vol. 106, pp. 181–185. https://doi.org/10.1016/j.fuproc.2012.07.023

    Article  CAS  Google Scholar 

  72. Christensen, J.H. and Tomasi, G., J. Chromatogr. A, 2007, vol. 1169, nos. 1–2, pp. 1–22. https://doi.org/10.1016/j.chroma.2007.08.077

    Article  CAS  PubMed  Google Scholar 

  73. Filatov, V.M. and Safieva, R.Z., Neftepererab. Neftekhim. Nauch.-Tekh. Dostizh. Pered. Opyt, 2009, no. 9, pp. 33–39.

    Google Scholar 

  74. Lobachev, A.L., Fomina, N.V., and Monakhova, Yu.B., Izv. Saratovsk. Univ., Nov. Ser., Ser. Khim. Biol. Ekol., 2015, vol. 15, no. 1, pp. 23–27.

    Google Scholar 

  75. Khanmohammadi, M., Garmarudi, A.B., and de la Guardia, M., TrAC Trends Anal. Chem., 2012, vol. 35, pp. 135–149. https://doi.org/10.1016/j.trac.2011.12.006

    Article  CAS  Google Scholar 

  76. Alizadeh, B., Alipour, M., Chehrazi, A., and Мirzaie, S., Оrg. Geochem., 2017, vol. 111, pp. 67–81. https://doi.org/10.1016/j.orggeochem.2017.05.006

    Article  CAS  Google Scholar 

  77. Vieira, A.P., Portela, N.A., Neto, Á.С., Lacerda, V., Romão, W., Castro, E.V.R., and Filgueiras, P.R., Fuel, 2019, vol. 253, pp. 320–326. https://doi.org/10.1016/j.fuel.2019.05.028

    Article  CAS  Google Scholar 

  78. Vieira, L.V., Rainha, K.P., de Castro, E.V.R., Filgueiras, P.R., Carneiro, M.T.W., and Вrandão, G.P., Microchem. J., 2016, vol. 124, pp. 26–30. https://doi.org/10.1016/j.microc.2015.07.01

    Article  CAS  Google Scholar 

  79. Rodrigues, R.R., Rocha, J.T., Oliveira, L.M.S., Dias, J.C.M., Müller, E.I., Castro, E.V., and Filgueiras, P.R., Chemometr. Intell. Lab. Syst., 2017, vol. 166, pp. 7–13. https://doi.org/10.1016/j.chemolab.2017.04.00

    Article  CAS  Google Scholar 

  80. Bagheri Garmarudi, A., Khanmohammadi, M., Ghafoori Fard, H., and de la Guardia, M., Fuel, 2019, vol. 236, pp. 1093–1099. https://doi.org/10.1016/j.fuel.2018.09.013

    Article  CAS  Google Scholar 

  81. Duarte, L.M., Filgueiras, P.R., Silva, S.R., Dias, J.C., Oliveira, L.M., Castro, E.V., and de Oliveira, M.A., Fuel, 2016, vol. 181, pp. 660–669. https://doi.org/10.1016/j.fuel.2016.05.049

    Article  CAS  Google Scholar 

  82. Weigel, S. and Stephan, D., Fuel, 2017, vol. 208, pp. 655–661. https://doi.org/10.1016/j.fuel.2017.07.048

    Article  CAS  Google Scholar 

  83. Bishop, C.M., Pattern Recognition and Machine Learning, Cambridge: Springer, 2006.

  84. Petrukhina, N.N. and Maksimov, A.L., Actualization of the information on Russian crude oils as a route to solving the problem of nonoptimum compounding of petroleum feedstock, Abstracts of Papers, Mezhdunarodnye konferentsii “Perspektivnye materialy s ierarkhicheskoi strukturoi dlya novykh tekhnologii i nadezhnykh konstruktsii” i “Khimiya nefti i gaza” v ramkakh Mezhdunarodnogo simpoziuma “Ierarkhicheskie materialy: razrabotka i prilozheniya dlya novykh tekhnologii i nadezhnykh konstruktsii” (Int. Confs. “Promising Materials with Hierarchic Structure for Novel Technologies and Reliable Structures” and “Oil and Gas Chemistry” within the Framework of Int. Symp. “Hierarchic Materials: Development and Applications to Novel Technologies and Reliable Structures,” 2018, p. 788.

  85. http://oilmuseum.ipc.tsc.ru

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to the head of the Chair of Automated Control Systems of the Gubkin University, Prof., Dr. Sci. (Eng.) Leonid Ivanovich Grigor’ev (passed away May 4, 2020), who was scientific advisor of one of the article coauthors, Viktor Dmitrievich Mishin, for constructive discussion of the problems of petroinformatics and prospects for its development in Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Safieva.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safieva, R.Z., Mishin, V.D. Systems Analysis of the Evolution of Views on Oil Systems: From Petroleum Chemistry to Petroinformatics. Pet. Chem. 61, 539–554 (2021). https://doi.org/10.1134/S0965544121060128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121060128

Keywords:

Navigation