Skip to main content
Log in

Transformation of Carbon-Rich Organic Components of a Domanik Rock in Sub- and Supercritical Aqueous Fluids

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The paper identifies major features that distinguish the transformation of organic matter (OM) of rocks in the Semiluki (Domanik) deposits into solid, liquid, and gaseous products when exposed to sub- and supercritical water under various temperature and pressure conditions. To this end, a set of modern instrumental methods were used, namely: Rock–Eval, elemental analysis, GC, GC/MS, IR spectroscopy, XRD, and ICP-MS. The degradation of high-molecular-weight bituminous components and the decomposition of kerogen affect the yield of oil extracts from the rock and increase the proportion of saturated and aromatic hydrocarbons in the extracts. In the molecular composition of the extracts, an increase is observed in the concentrations of light C11–C18 n-alkanes, C11–C12 alkyltrimethylbenzenes, naphthalenes, and phenanthrenes. Structural changes in asphaltenes are associated with an increase in their aromaticity and oxidation level, as well as with structural transformations in the vanadyl-porphyrin complexes. It was found that the oxidative degradation, desulfurization, and hydrolysis of carbon-rich components of organic matter are more vigorous in supercritical aqueous fluids than in subcritical water. In addition, a supercritical aqueous fluid promotes structural and phase transformations of rock minerals, in particular the isolation of a separate montmorillonite phase from a mica structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Bazhenova, T.K., Dakhnova, M.V., Zheglova, T.P., Lebedev, V.S., Mozhegova, S.V., Larkin, V.N., Nazarova, E.S., Nechitailo, G.S., Graizer, E.M., and Kiselev, S.M., Neftematerinskie formatsii, nefti i gazy dokembriya i nizhnego-srednego kembriya Sibirskoi platformy (Source Formations, Oils and Gases of the Precambrian and Lower-Middle Cambrian of the Siberian Platform), Varlamov, A.I., Ed., Moscow: VNIGNI, 2014.

  2. Gubaidullin, A.A., Savel’ev, V.A., Doronkin, K.N., and Bochkareva, L.A., Geolog. Nefti Gas., 1990. http://www.geolib.narod.ru/Journals/OilGasGeo/1990/05/Stat/05/stat05.html

  3. Kiryukhina, T.A., Fadeeva, N.P., Stupakova, A.V., Poludetkina, E.N., and Sautkin, R.S., Geolog. Nefti Gas., 2013, no. 3, pp. 76–87.

    Google Scholar 

  4. Ostroukhov, S.B., Plotnikova, I.N., Nosova, F.F., and Pronin, N., Geores., 2015, no. 62(3), pp. 42–47.

    Article  Google Scholar 

  5. Kiseleva, Yu.A., Dahnova, M.V., Zheglova, T.P., Mozhegova, S.V., and Nazarova, E.S., Proc. of Conf. Novye idei v geologii nefti i gasa (New Ideas in Geoligy of Oils and Gas), 2017, pp. 141–144.

  6. Nizamova A.V., Morozov, V.P., and Eskin, A.A., Formation Conditions of Volga-Ural Domanikites and Their Prospective Assessment, In Minerals: Structure, Properties, Methods of Investigation, Springer, 2020, pp. 169–173. https://doi.org/10.1007/978-3-030-49468-1_22

  7. Khasanova, N.M., Sitdikova, L.M., Morozov, V.P., Nizamutdinov, N.M., Khasanov, R.A., and Nurgaliev, D.K., Geol. Polez. Iskop. Problem Geoekol. Bashkirtostan, Ural, 2016, pp. 189 –191.

  8. Presnyakova, O.V., Trudy molodezhnoi nauchno-prakticheskoi konf. “TatNIPIneft’” (Proc. Youth Sci. and Practical Conf. “TatNIPIneft”’), 2014, pp. 1–11. http://www.tatnipi.ru/upload/sms/2014/geol/012.pdf

  9. Stupakova, A.V., Fadeeva, N.P., Kalmykov, G.A., Bogomolov, A.K., Kiryukhina, T.A., Korobova, N.I., Shardanova, T.A., Suslova, A.A., Sautkin, R.S., and Poludetkina, E.N., Geo Res., 2015, vol. 2, no. 61, pp. 77–86.

    Google Scholar 

  10. Bushnev, D.A., Burdel’naya, N.S., Shanina, S.N., and Makarova, E.S., Petrol. Chem., 2004, vol. 44, no. 6, pp. 416–425.

    Google Scholar 

  11. Muslimov, R.H., Neft. Privints., 2019, vol. 3, pp. 1–28.

    Google Scholar 

  12. Tolkachev, V.M., Neft. Gas. Novatsii, 2014, no. 4, pp. 95–98.

    Google Scholar 

  13. Khisamov, R.S., Zakirov, I.S., Zakharova, E.F., Bazarevskaya, V.G., Abusalimova, R.R., and Timirov, D.A., Neft. Khoz–vo, 2018, no. 11, pp. 78–83.

    Google Scholar 

  14. Anan’ev, V.V., Smelkov, V.M., and Pronin, N.V., Geolog. Nefti Gas., 2007, no. 1, pp. 32–38.

    Google Scholar 

  15. Khisamov, R.S., Bazarevskaya, V.G., Panina, S.A., Abusalimova, R.R., Abdrashitova, A.F., and Grishanina, O.A, Neft. Khoz–vo, 2017, no. 6, pp. 18–21.

    Google Scholar 

  16. Galimov, E.M. and Kamaleeva, A.I., Geochem. Int. (Russia), 2015, vol. 53, no. 2, pp. 95–112. https://doi.org/10.1134/S0016702915020032

    Article  CAS  Google Scholar 

  17. Galimov, E.M. and Kamaleeva, A.I., Geokhim., 2015, no. 2, pp. 103–122.

    Google Scholar 

  18. Muslimov, R.H., Glumov, I.F., Plotnikova, I.N., Trofimov, V.A., and Nurgaliev, D.K., Geolog. Nefti Gas., 2004, no. 1, pp. 43–49.

    Google Scholar 

  19. Плотникова, И.Н., Geologo-geofizicheskie i geokhimicheskie predposylki perspektiv neftegazonosnosti kristallicheskogo fundamenta Tatarstana (Geological and Geophysical and Geochemical Preconditions for Prospects Oil and Gas Content of the Crystalline Basement of Tatarstan), St. Petersburg: Nedra, 2004.

  20. Trofimov, V.A., Korolev, E.A., and Khuzin, I.A., Materialy Vseross. konf. “Degazatsiya Zemli: Geotektonika geodinamika geoflyuidy neft’ i gaz uglevodorody i zhizn’” (Proc. All-Russian. Conf. “Degasification of the Earth: Geotectonics Geodynamics Geofluid Oil and Gas Hydrocarbons and Life”), Moscow: GEOS, 2010, pp. 577–579.

  21. Muslimov, R.H., Geores., 2012, vol. 5, no. 47, pp. 3–6.

    Google Scholar 

  22. Khisamov, R.S., Bazarevskaya, V.G., Tarasova, T.I., Mikhaylova, O.V., and Mikhaylov, S.N., Oil Industr. J., 2016, vol. 98, pp. 10–13.

    Google Scholar 

  23. Kayukova, G.P. and Feoktistov, D.A., Oil Industr. J., 2017, no. 4, pp. 100–102. https://doi.org/10.24887/0028-2448-2017-4-100-102

    Article  CAS  Google Scholar 

  24. Kayukova, G.P., Mikhailova, A.N., Khasanova, N.M., Morozov, V.P., Vakhin, A.V., Nazimov, N.A., Sotnikov, O.S., and Khisamov, R.S., Geofluid., 2018, pp. 1–14. https://doi.org/10.1155/2018/9730642

  25. Savel’ev, V.V., Pevneva, G.S., Surkov, V.G., and Golovko, A.K., Solid Fuel Chem., 2011, vol. 45, no. 2, pp. 135–141. https://doi.org/10.3103/S036152191102011X

    Article  CAS  Google Scholar 

  26. Kruse, A. and Dinjus, E., J. Supercrit. Fluid., 2007, vol. 39, pp. 362–380. https://doi.org/10.1016/j.supflu.,

    Article  CAS  Google Scholar 

  27. Brunner, G., Supercrit. Fluid Sci. Technol., 2014, vol. 5, pp. 569–589. https://doi.org/10.1016/B978-0-444-59413-6.00011-X

    Article  Google Scholar 

  28. Luik, L., Luik, H., Palu, V., Kruusement, K., and Tamvelius, H., J. Analyt. Appl. Pyrol., 2009, vol. 85, pp. 492–496. https://doi.org/10.1016/j.jaap.,

    Article  CAS  Google Scholar 

  29. Canel, M. and Missal, P., Fuel, 1994, vol. 73, pp. 1776–1780. https://doi.org/10.1016/0016-2361(94)90167-8

    Article  CAS  Google Scholar 

  30. Funazukuri, T., Yokoi, S., and Wakao, N., Fuel, 1988, vol. 67, pp. 10–14. https://doi.org/10.1016/0016-2361(88)90004-X

    Article  CAS  Google Scholar 

  31. Olukcu, N., Yanik, J., Saglam, M., Yuksel, M., and Karaduman, M., Energy Fuel., 1999, vol. 13, pp. 895–905. https://doi.org/10.1021/ef9802678

    Article  CAS  Google Scholar 

  32. Luik Lea, H.L., Energy Sources, 2001, vol. 23, pp. 449-459. https://doi.org/10.1080/009083101300058462

    Article  Google Scholar 

  33. Nasyrova, Z.R., Kayukova, G.P., Khasanova, N.M., and Vakhin, A.V., Petrol. Chem., 2020, vol. 60, pp. 683-692. https://doi.org/10.1134/S0965544120060079

    Article  CAS  Google Scholar 

  34. Nasyrova, Z.R., Kayukova, G.P., Onishchenko, Y.V., Morozov, V.P., and Vakhin, A.V., Energy Fuel., 2020, vol. 34, no. 2, pp. 1329–1336. https://doi.org/10.1021/acs.energyfuels.9b03130

    Article  CAS  Google Scholar 

  35. Nasyrova, Z.R., Kayukova, G.P., Vakhin, A.V., Djimasbe, R., and Chemodanov, A.E., Process., 2020, vol. 8, no. 7, p. 800. https://doi.org/10.3390/pr8070800

    Article  CAS  Google Scholar 

  36. Fedyaeva, O.N., Antipenko, V.R., Dubov, D.Y., Kruglyakova, T.V., and Vostrikov, A.A., J. Supercrit. Fluid., 2016, no. 109, pp. 157–165. https://doi.org/10.1016/j.supflu.2015.11.020

    Article  CAS  Google Scholar 

  37. Lopatin, N.V. and Emets, T.P., Piroliz v neftegazovoi geokhimii (Pyrolysis in Petroleum Geochemistry), Moscow: Nauka, 1987.

  38. Brunner, G., J. Supercrit. Fluid., 2009, vol. 47, pp. 373–381. https://doi.org/10.1016/j.supflu.2008.09.002

    Article  CAS  Google Scholar 

  39. Yusupova, T.N., Ganeeva, Y.M., Khalikova, D.A., and Romanov, V.V., Petrol. Chem., 2012, vol. 52, pp. 15–21. https://doi.org/10.1134/S0965544112010112

    Article  CAS  Google Scholar 

  40. Yusupova, T.N., Ganeeva, Y.M., Romanov, G.V., Barskaya, E.E., Morozov, V.I., Okhotnikova, E.S., and Vakhin, A.V., Petrol. Chem., 2017, vol. 57, no. 3, pp. 198–202. https://doi.org/10.1134/S0965544117020256

    Article  CAS  Google Scholar 

  41. Kayukova, G.P., Mikhailova, A.M., Feoktistov, D.A., Morozov, V.P., and Vakhin, A.V., Energy Fuel., 2017, vol. 31, pp. 7789–7799. https://doi.org/10.1021/acs.energyfuels.7b00612

    Article  CAS  Google Scholar 

  42. Onishchenko, Y.V., Vakhin, A.V., Gareev, B.I., Batalin, G.A., Morozov, V.P., and Eskin, A.A., Petrol. Sci. Technol., 2019, vol. 37, no. 7, pp. 756–762. https://doi.org/10.1080/10916466

    Article  CAS  Google Scholar 

  43. Karunadasa, K.S.P., Manoratne, C.H., Pitawala, H., and Rajapakse, R.M.G., J. Phys. Chem. Solid., 2019, vol. 134, pp. 21-28. https://doi.org/10.1016/j.jpcs.2019.05.023

    Article  CAS  Google Scholar 

  44. Kayukova, G.P., Kiyamova, A.M., Mikhailova, A.N., Kosachev, I.P., Petrov, S.M., Romanov, G.V., Sitdikova, L.M., Plotnikova, I.N., and Vakhin, A.V., Chem. Technol. Fuel. Oil., 2016, vol. 52, pp. 149–161. https://doi.org/10.1007/s10553-016-0685-2

    Article  CAS  Google Scholar 

  45. Antipenko, V.R., Bakanova, O.S., and Kashapov, R.S., Geo Аssets Eng., 2019, vol. 330, pp. 152–160.

    Google Scholar 

  46. Kauukova, G.P., Mikhailova, A.N., Kosachev, I.P., Eskin, A.A., and Morozov, V.I., Petrol. Chem., 2019, vol. 59, no. 1, pp. 24–33. https://doi.org/10.1134/S0965544119010080

    Article  Google Scholar 

  47. Deng, S., Wang, Z., Gu, Q., Meng, F., Li, J., and Wang, H., Fuel Proc. Technol., 2011, vol. 92, pp. 1062–1067. https://doi.org/10.1016/j.fuproc.2011.01.001

    Article  CAS  Google Scholar 

  48. Wang, Z., Deng, S., Gu, Q., Cui, X., Zhang, Y., and Wang, H., Energy Fuel., 2014, vol. 28, no. 12, pp. 7440–7447. https://doi.org/10.1021/ef502134p

    Article  CAS  Google Scholar 

  49. Burdel’naya, N.S., Bushnev, D.A., and Mokeev, M.V., Vestn. Inst. Geol. Komi Nauch. Tsentr. Ural Otd. RAN, 2012, vol. 11, pp. 18–22.

    Google Scholar 

  50. Mibbach, H., Duda, J.P., Lünsdorf, N.K., Schmidt, B.C., and Thiel, V., Int. J. Astrobiol., 2016, vol. 15, no. 3, pp. 165–175. https://doi.org/10.1017/S1473550416000069

    Article  CAS  Google Scholar 

  51. Huss, E.B. and Burnham, A.K., Fuel, 1982, vol. 61, pp. 1188-1196. https://doi.org/10.1016/0016-2361(82)90018-7

    Article  CAS  Google Scholar 

  52. Kawamura, K., Tannenbaum, E., Huizinga, B.J., and Kaplan, I.R., Org. Geochem., 1986, vol. 10, pp. 1059–1065. https://doi.org/10.1016/S0146-6380(86)80045-6

    Article  CAS  PubMed  Google Scholar 

  53. Stoch, L. and Sikora, W., Clays Clay Miner., 1976, vol. 24, pp. 156–162. https://doi.org/10.1346/CCMN.1976.0240402

    Article  CAS  Google Scholar 

  54. Punanova, S.A., Geores., 2020, vol. 22, no. 2, pp. 45–55. https://doi.org/10.18599/grs.2020.2.45-55

    Article  Google Scholar 

  55. Gottikh, R.P., Pisotskii, B.I., and Plotnikova, I.N., Geores., 2012, vol. 5, no. 47, pp. 24–31.

    Google Scholar 

Download references

Funding

The study was conducted with financial support from the Russian Foundation for Basic Research (research project no. 20-35-90112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. R. Nasyrova.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasyrova, Z.R., Kayukova, G.P., Vakhin, A.V. et al. Transformation of Carbon-Rich Organic Components of a Domanik Rock in Sub- and Supercritical Aqueous Fluids. Pet. Chem. 61, 608–623 (2021). https://doi.org/10.1134/S0965544121060062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121060062

Keywords:

Navigation