Skip to main content
Log in

Modelling of Love Waves in a Heterogeneous Medium Demarcated by Functionally Graded Piezoelectric Layer and Size-Dependent Micropolar Half-Space

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

This article is concerned with the analysis of Love-type waves in a three-layer medium consisting of a functionally graded piezoelectric layer loaded on a heterogeneous solid layer above a size-dependent micropolar half-space. The intermediate layer is heterogeneous due to exponential type variation in rigidity and density.

Methods

Separation of variable method has been used to compute the displacement components, potential function and microrotational vectors of the composite layered structure. For electrically open circuit and short circuit cases, the closed form expression of the generalized frequency equation has been obtained in terms of the Bessel functions from the condition of constructive interference.

Results

Extractions of this theoretical study are in perfect agreement with the standard results. An extensive analysis for the propose model is carried out through numerical computation and graphical demonstration to explore the presence of piezoelectricity, heterogeneity and micropolarity in the frequency equation.

Conclusions

This study also reveals that the material parameters associated with upper layer, constrained layer and half-space, thickness parameter of the layers has a remarkable effect on phase and damped velocities of the Love waves propagation under considered geometrical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Thomson WT (1950) Transmission of elastic waves through a stratified solid medium. J Appl Phys 21(2):89–93

    Article  MathSciNet  Google Scholar 

  2. Haskell NA (1953) The dispersion of surface waves on multilayered media. Bull Seismol Soc 43:17–34

    Article  MathSciNet  Google Scholar 

  3. Abd-Alla AM, Abo-Dahab SM, Alotaibi HA (2017) Propagation of a thermoelastic wave in a half-space of a homogeneous isotropic material subjected to the effect of gravity field. Arch Civ Mech Eng 17(3):564–573

    Article  Google Scholar 

  4. Boschi E (1973) Lamb and Love wave propagation in an infinite micropolar elastic plate. Ann Geophys 26(2–3):341–355

    Google Scholar 

  5. Chatterjee M, Dhua S, Chattopadhyay A, Sahu SA (2016) Seismic waves in heterogeneous crust-mantle layers under initial stresses. J Earthq Eng 20(1):39–61

    Article  Google Scholar 

  6. Chen ZG, Hu YT, Yang JS (2008) Shear horizontal piezoelectric waves in a piezoceramic plate imperfectly bonded to two piezoceramic half-spaces. J Mech 24(3):229–239

    Article  Google Scholar 

  7. Deliktas E, Teymur M (2018) Surface shear horizontal waves in a double-layered nonlinear elastic half space. IMA J Appl Math 83(3):471–495

    Article  MathSciNet  Google Scholar 

  8. Majhi S, Pal PC, Kumar S (2017) Reflection and transmission of plane SH-waves in an initially stressed inhomogeneous anisotropic magnetoelastic medium. J Seismol 21(1):155–163

    Article  Google Scholar 

  9. Qian Z, Jin F, Wang Z, Kishimoto K (2007) Transverse surface waves on a piezoelectric material carrying a functionally graded layer of finite thickness. Int J Eng Sci 45(2–8):455–466

    Article  Google Scholar 

  10. Sinha N (1967) Propagation of Love waves in a non-homogeneous stratum of finite depth sandwiched between two semi-infinite isotropic media. Pure Appl Geophys 67:65–70

    Article  Google Scholar 

  11. Biot MA (1965) Mechanics of incremental deformations. Wiley, New York

    Book  Google Scholar 

  12. Dyszlewicz J (2012) Micropolar theory of elasticity, vol 15. Springer Science & Business Media

  13. Jaffe B (2012) Piezoelectric ceramics, vol 3. Elsevier

  14. Payton RC (2012) Elastic wave propagation in transversely isotropic media. Springer Science and Business Media

  15. Chattaraj R, Samal SK (2016) On dispersion of Love type surface wave in anisotropic porous layer with periodic non uniform boundary surface. Meccanica 51(9):2215–2224

    Article  MathSciNet  Google Scholar 

  16. Gupta S, Dutta R, Das S (2020) Love-type wave propagation in an inhomogeneous cracked porous medium loaded by heterogeneous viscous liquid layer. J Vib Eng Technol. https://doi.org/10.1007/s42417-020-00237-y

    Article  Google Scholar 

  17. Pandit DK, Kundu S, Gupta S (2017) Propagation of Love waves in a prestressed Voigt-type viscoelastic orthotropic functionally graded layer over a porous half-space. Acta Mech 228(3):871–880

    Article  MathSciNet  Google Scholar 

  18. Prasad B, Kundu S, Pal PC, Alam P (2020) Dispersion of Love waves in prestressed double-layered medium over a gravitating half-space. Arab J Geosci 13(13):1–10

    Article  Google Scholar 

  19. Vishwakarma SK, Kaur R, Panigrahi TR (2018) Love wave frequency in an orthotropic crust over a double-layered anisotropic mantle. Soil Dyn Earthq Eng 110:86–92

    Article  Google Scholar 

  20. Cao X, Jin F, Jeon I, Lu TJ (2009) Propagation of Love waves in a functionally graded piezoelectric material (FGPM) layered composite system. Int J Solids Struct 46(22–23):4123–4132

    Article  Google Scholar 

  21. Manna S, Kundu S, Gupta S (2015) Love wave propagation in a piezoelectric layer overlying in an inhomogeneous elastic half-space. J Vib Control 21(13):2553–2568

    Article  MathSciNet  Google Scholar 

  22. Ezzin H, Amor MB, Ghozlen MHB (2016) Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. Ultrasonics 69:83–89

    Article  Google Scholar 

  23. Gaur AM, Rana DS (2015) Dispersion relations for SH waves propagation in a porous piezoelectric (PZT–PVDF) composite structure. Acta Mech 226(12):4017–4029

    Article  MathSciNet  Google Scholar 

  24. Liu J, Wang ZK (2005) The propagation behavior of Love waves in a functionally graded layered piezoelectric structure. Smart Mater Struct 14(1):137–146

    Article  Google Scholar 

  25. Singh AK, Kumar S, Kumari R (2018) Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries. Eur Phys J Plus 133(3):1–15

    Google Scholar 

  26. Zhu H, Zhang L, Han J, Zhang Y (2014) Love wave in an isotropic homogeneous elastic half-space with a functionally graded cap layer. Appl Math Comput 231:93–99

    MathSciNet  MATH  Google Scholar 

  27. Belyankova TI, Vorovich EI, Kalinchuk VV, Tukodova OM (2020) Peculiarities of surface acoustic waves, propagation in structures with functionally graded piezoelectric materials, coating from different ceramics on the basis of PZT. J Adv Dielectr. https://doi.org/10.1142/S2010135X20600176

    Article  Google Scholar 

  28. Kaur T, Sharma SK, Singh AK (2017) Shear wave propagation in vertically heterogeneous viscoelastic layer over a micropolar elastic half-space. Mech Adv Mater Struc 24(2):149–156

    Article  Google Scholar 

  29. Midya GK (2004) On Love-type surface waves in homogeneous micropolar elastic media. Int J Eng Sci 42(11–12):1275–1288

    Article  MathSciNet  Google Scholar 

  30. Goyal R, Kumar S, Sharma V (2020) A size-dependent micropolar-piezoelectric layered structure for the analysis of love wave. Waves Random Complex Media 30(3):544–561

    Article  MathSciNet  Google Scholar 

  31. Wang Z, Shang F (1997) Cylindrical buckling of piezoelectric laminated plates. Acta Mech Solida Sin 18:101–108

    Google Scholar 

  32. Du J, Jin X, Wang J, Xian K (2007) Love wave propagation in functionally graded piezoelectric material layer. Ultrasonics 46(1):13–22

    Article  Google Scholar 

  33. Bleustein JL (1968) A new surface wave in piezoelectric materials. Appl Phys Lett 13(12):412–413

    Article  Google Scholar 

  34. Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16:1–18

    MathSciNet  Google Scholar 

  35. Lakes R (2016) Physical meaning of elastic constants in Cosserat, void, and microstretch elasticity. J Mech Mater Struct 11(3):217–229

    Article  MathSciNet  Google Scholar 

  36. Watson GN (1944) A treatise on the theory of Bessel functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  37. Gauthier RD (1982) Experimental investigation on micropolar media. In: Brulin O, Hsieh R (eds) Mechanics of micropolar media. World Scientific, Singapore, pp 395–463

    Chapter  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Indian Institute of Technology (Indian School of Mines), Dhanbad for providing great opportunity, guidance, best facilities, and equipments.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PP gratitude towards SG for giving support and guidance throughout to make this paper productive and stimulating.

Corresponding author

Correspondence to Prasenjit Pati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix A

$$\begin{aligned} a_{11} & = \left( {\overline{\varsigma }_{44} + \tau \overline{e}_{15} } \right)\left\{ {\frac{f}{2}\sin \varsigma (h + H) + \varsigma \cos \varsigma (h + H)} \right\}e^{f(h + H)} , \,\,a_{12} = \left( {\overline{\varsigma }_{44} + \tau \overline{e}_{15} } \right)\left\{ {\varsigma \sin \varsigma (h + H) - \frac{f}{2}\cos \varsigma (h + H)} \right\}e^{f(h + H)} ,\\ a_{13} & = q_{1} \,\overline{e}_{15} \,e^{{\,\left( {\frac{f}{2} - q_{1} } \right)\,(h + H)}} ,\,\, a_{14} = q_{2} \,\overline{e}_{15} \,e^{{\,\left( {\frac{f}{2} - q_{2} } \right)\,(h + H)}},\,\, a_{1\,j} = 0\,,\,\,j = 5 - 10\,;\, a_{21} = e^{\frac{fH}{2}} \sin \varsigma H\,,\, a_{22} = - e^{\frac{fH}{2}} \,\cos \varsigma H,\, \\ a_{23} & = a_{2\,4} = \,0,\, a_{25} = J_{l} \left( {\frac{kc}{{\delta c_{2} }}e^{\delta H} } \right)e^{{\frac{{m_{h} H}}{2}}} \,, a_{26} = Y_{l} \left( {\frac{kc}{{\delta c_{2} }}e^{\delta H} } \right)e^{{\frac{{m_{h} H}}{2}}} \,, a_{2j} = 0\,,\,\,j = 7 - 10\,;\, \\ a_{31} & = \left( {\overline{\varsigma }_{44} + \tau \overline{e}_{15} } \right)\left\{ {\frac{f}{2}\sin \varsigma H + \varsigma \cos \varsigma H} \right\}e^{fH} , a_{32} = \left( {\overline{\varsigma }_{44} + \tau \overline{e}_{15} } \right)\left\{ { - \frac{f}{2}\cos \varsigma H + \varsigma \sin \varsigma H} \right\}e^{fH} ,\,a_{33} = \overline{e}_{15} \,q_{1} \,e^{{\left( {\frac{f}{2} - q_{1} } \right)H}} ,\\ a_{34} & = \overline{e}_{15} \,q_{2} \,e^{{\left( {\frac{f}{2} - q_{2} } \right)H}} ,\,a_{35} = \overline{\mu }_{2} \,e^{{ - \frac{{m_{h} H}}{2}}} \left\{ {\frac{{m_{h} }}{2}J_{l} \left( {\frac{kc}{{\delta c_{2} }}e^{\delta H} } \right) + \frac{kc}{{c_{2} }}\,e^{\delta H} \,J^{\prime}_{l} \left( {\frac{kc}{{\delta c_{2} }}e^{\delta H} } \right)} \right\}, a_{36} = \overline{\mu }_{2} \,e^{{ - \frac{{m_{h} H}}{2}}} \left\{ {\frac{{m_{h} }}{2}Y_{l} \left( {\frac{kc}{{\delta c_{2} }}e^{\delta H} } \right) + \frac{kc}{{c_{2} }}\,e^{\delta H} \,Y^{\prime}_{l} \left( {\frac{kc}{{\delta c_{2} }}e^{\delta H} } \right)} \right\}, \end{aligned}$$
$$\begin{aligned}a_{3j} & = 0\,,\,\,j = 7 - 10\,;\, a_{4j} = 0\,,\,\,j = 1 - 4\,,\, a_{45} = J_{l} \left( {\frac{kc}{{\delta c_{2} }}} \right)\,,\, \\ a_{46} &= Y_{l} \left( {\frac{kc}{{\delta c_{2} }}} \right)\,,\, a_{47} = 0\,,\,a_{48} = - M\,,\, a_{49} = - N\,,\, a_{410} = 0\,; a_{5j} = 0\,,\,\,j = 1 - 4,\\ a_{55} &= - \overline{\mu }_{2} \left\{ {\frac{{m_{h} }}{2}J_{l} \left( {\frac{kc}{{\delta c_{2} }}} \right) + \frac{kc}{{c_{2} }}J^{\prime}_{l} \left( {\frac{kc}{{\delta c_{2} }}} \right)} \right\}, \\ a_{56} &= - \overline{\mu }_{2} \left\{ {\frac{{m_{h} }}{2}Y_{l} \left( {\frac{kc}{{\delta c_{2} }}} \right) + \frac{kc}{{c_{2} }}Y^{\prime}_{l} \left( {\frac{kc}{{\delta c_{2} }}} \right)} \right\}\,, a_{57} = ik\kappa_{3} \,,\, a_{58} = P\left( {M\mu_{3} - \kappa_{3} } \right),\\ a_{59} & = Q\left( {N\mu_{3} - \kappa_{3} } \right)\,,\,\,\,a_{510} = 0\,; \,\,a_{6j} = 0\,,\,\,j = 1 - 6\,,\,a_{67} = R^{2} \left( {\alpha_{3} + \beta_{3} + \gamma_{3} } \right) - k^{2} \alpha_{3} \,,\, a_{68} = ikP\left( {\beta_{3} + \gamma_{3} } \right)\,,\, a_{69} = ikQ\left( {\beta_{3} + \gamma_{3} } \right)\,,\, a_{610} = 0\,; a_{7j} = 0\,,\,\,j = 1 - 6,\\ a_{77} & = - ikR\left( {\beta_{3} + \gamma_{3} } \right)\,,a_{78} = k^{2} \beta_{3} + P^{2} \gamma_{3} \,,\,a_{79} = k^{2} \beta_{3} + Q^{2} \gamma_{3} \,,\,a_{710} = 0;\\ a_{81} & = - e^{\frac{fH}{2}} \,\tau \,\sin \varsigma H\,,\, a_{82} = e^{\frac{fH}{2}} \,\tau \,cos\varsigma H\,,\,a_{83} = e^{{ - q_{1\,} H}} \,,\, a_{84} = e^{{ - q_{2\,} H}} \,,\,a_{8j} = 0\,,\,\,j = 5 - 10\,; \\ a_{91} & = - e^{{\frac{f(h + H)}{2}}} \,\tau \,sin\varsigma (h + H)\,,\, a_{92} = e^{{\frac{f(h + H)}{2}}} \,\tau \,\cos \varsigma (h + H)\,,\,a_{93} = e^{{ - \,q_{1} \,(h + H)}} \,,\,a_{94} = e^{{ - \,q_{2} \,(h + H)}} \,,\, a_{9j} = 0\,,\,\,j = 5 - 10\,; \end{aligned}$$
$$\begin{aligned}a_{101} & = a_{10\,2} = 0\,,\, a_{103} = q_{1} \,\overline{\eta }_{11} \,e^{{ - \,(f + q_{1} )\,(h + H)}} \,,\, a_{104} = q_{2} \,\overline{\eta }_{11} \,e^{{ - \,(f + q_{2} )\,(h + H)}} \,,\, a_{10j} = 0\,,\,\,j = 5 - 9\,,\,a_{1010} = \eta_{a} \,k\,e^{ - \,k\,(h + H)} \,;\\ \,\, a_{111}& = - \tau \,e^{{\frac{f(h + H)}{2}}} \,\sin \varsigma (h + H)\,,\, a_{112} = \tau \,e^{{\,\frac{f(h + H)}{2}}} \,\cos \varsigma (h + H)\,,\,a_{113} = e^{{ - \,q_{1} (h + H)}} \,,\, a_{114} = e^{{ - \,q_{2} (h + H)}} \,,\, a_{11j} = 0\,,\,\,j = 5 - 9\,,\, a_{1110} = - e^{ - \,k(h + H)} \,.\end{aligned}$$

Also \(a_{\,p\,q}^{0} = a_{\,p\,q} ,\,\,p = 1 - 8,\,q = 1 - 10\,\,\& \,\,a_{\,p\,q}^{0} = a_{\,p + 1\,\,q} \,,\,p = 9,10\,,\,q = 1 - 10\) and \(a_{\,p\,q}^{s} = a_{\,p\,q} \,;\,p,q = 1 - 9.\)

Appendix B

Define \(b_{6\,j} = 0\,,\,\,j = 1 - 6\,,\,\) \(b_{6\,7} = R\,,\,\) \(b_{6\,7} = R\,,\,\)\(b_{6\,8} = ik,\) \(b_{6\,9} = ik,\) \(b_{\,6\,10} = 0\,;\) \(b_{7\,j} = 0\,,\,\,j = 1 - 6\,,\,\) \(b_{7\,7} = ik\,,\,\) \(b_{7\,8} = - P\,,\,\) \(b_{7\,9} = - Q\,,\,\) \(b_{\,7\,10} = 0\,.\)

Thus for \(p = 1 - 5\,\& \,8 - 10\,,\,\,\overline{a}_{\,p\,q}^{0} = a_{\,p\,q}^{0} ;\,q = 1 - 10\) and for \(p = 6\,\& \,7\,,\,\,\overline{a}_{\,p\,q}^{0} = b_{\,p\,q} \,;\,q = 1 - 10\,.\)

Also for \(p = 1 - 5\,{\text{and}}\,8 - 9\,,\,\,\overline{a}_{\,p\,q}^{s} = a_{\,p\,q}^{s}\) and for \(p = 6\,{\text{and}}\,7\,,\,\,\overline{a}_{\,p\,q}^{s} = b_{\,p\,q} \,;\,q = 1 - 9\,.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pati, P., Gupta, S. Modelling of Love Waves in a Heterogeneous Medium Demarcated by Functionally Graded Piezoelectric Layer and Size-Dependent Micropolar Half-Space. J. Vib. Eng. Technol. 9, 1833–1854 (2021). https://doi.org/10.1007/s42417-021-00330-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-021-00330-w

Keywords

Navigation